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Abstract
A method to extend the Hough transform (HT) to detect connectivity by
ordered accumulation is reported. The method is applied to the dynamic
combinatorial HT [6]. A focus of attention mechanism is also reported.
Our connective HT with focus of attention reduces the computational
complexity of the DCHT and increases the S/N ratio of the peak in
its accumulator. It may be regarded as a principled method for curve
tracing. A general method to improve the computational efficiency of
the DCHT by probabilistic selection of interesting fixation points is also
introduced. Results using simulated and real data are reported.

1 The connectivity problem

A common problem to all Hough transform (HT) [4] is the 'connectivity prob-
lem'. It arises because the accumulator counts only give the number of points
that share the same parameters. These points may not be connected with each
other. Hence the number of points is not necessarily a good measure for the
strength of the pattern. In the case of straight line detection, Duda and Hart
[3] remarked as early as 1972 that "... the (Hough) technique finds collinear
points without regard to contiguity. Thus the position of a best-fit line can
be distorted by the presence of unrelated figure points in another part of the
picture. A related problem is that of meaningless groups of collinear points
being detected".

Though this is a fundamental problem, it has not received much attention
in the past. We are only aware of one effort in solving this problem. Motivated
by practical application in integrated circuits, Shu, Li, Mancuso and Sun [10]
replaced the counters by bit maps. Instead of accumulating, the appropriate
bits in the bit map are set to '1 ' . After the accumulation is complete, each
bit map is searched for sequences of '1 ' s. Unfortunately, this method amounts
to no more than a brute force search. Also, for an TV x N input image, the
memory required is increased by }o

N
N, making this practical only for small

images.

In the rest of this paper, we shall report a new method, known as Con-
nective Hough Transform (CHT), to add connectivity by ordered accumulation
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and focus of attention. Significantly, our method uses only twice the amount
of memory - two accumulators instead of one. Also, the computational effort
is reduced and the S/N ratio of the accumulator space is improved since only
connected points are accumulated ( see below ). This paper will only describe
the application of our method to line detection. The basic idea can be gen-
eralized to other parametric curves using the standard HT ( see section 6 ).
For line detection, the method is implemented using Dynamic Combinatorial
Hough Transform (DCHT) [6].

2 Adding connectivity by ordered accumula-
tion

The DCHT for straight line detection is as follows : First a point po = (XQ, Vo)
is selected. For each of the other n - 1 points p,- = (a;,, y,), the angle #,• where

^ ^ (1)
Xi - X0

is accumulated in a ^-accumulator accl. The angle range of accl is —45° <
9 < 135°.

After the accumulation is complete, the highest peak is found. If it has
enough votes, then a line in that direction is removed. If not, only po is removed.
This algorithm is repeated till all points have been removed. A major advantage
of the DCHT is that it uses only a 1-dimensional accumulator, instead of a 2-
dimensional accumulator as in other HT.

Our new HT differs from the DCHT in its methods of accumulation, which
we describe below.

Consider a line segment whose orientation is more vertical than horizontal.
Thus we shall only use the half of accl where 45" <6< 135°. The other case
( -45° < 6 < 45° ) is similiar.

First divide the input image into rows. Let the first point po be at row 0.
Assume furthermore that po is an endpoint of the line segment to be found (
Fig. 1 ) (*). Consider the line segment poP6 m the figure. A simple observation
is that pi is at row 1, P2 is at row 2, and so on. Thus if we were to accumulate
row by row, we would expect to find an accumulation at the same cell each
time a row is accumulated. The connective HT (CHT) proposed below takes
advantage of this regularity.

In the following, a flag active/inactive is attached to accumulator accl.
This flag is not necessary in the implementation but is introduced here for
clarity.

Algorithm ( Connective Hough transform )

Input : po at row 0; 'vertical' line segment to be found.

1. 1 —• z; ;;; start with row 1

0 —• accl; ;;; row 0
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active —+ accl(flag);

2. accumulate row i. However, instead of incrementing a cell accl(9) by 1,
the row number is put into the cell, i.e.

i ->• ace1(0);

only active cells are accumulated, inactive cells are left unchanged.

3. for all active acc\{9) do

if (i — acc\{9) > gap-threshold) then

inactive —> accl(flag)(9);

endif;

4. update 0m;n and 0max, hence c; and cu; ( see section 3 )

5. if at least one active accl(9) then

i + 1 —> i; goto step 2.

else

exit;

endif;

Output : row number of the other endpoint in 9 direction

Step 4 may be ignored for the moment. It will be explained in the next
section.

Step 2 has an advantage over keeping the count as in standard HT. Nearby
points in the same row frequently vote to the same cell, sometimes culminating
into a false impression of a high peak for a short line [10]. Keeping the row
number avoids this problem.

Step 3 is the only step which is absent in the standard HT. It does the
following : After each row accumulation, we look at the accumulator. If the
cell does not contain the current row number, then we know for certain that
there is a gap. If the gap is too large, (i.e. i — acc\(9) > gapJhreshold ), then
the cell is turned from active to inactive, meaning that the connectivity is no
longer there. An inactive cell contains the last row for which it is incremented.
Thus its content gives precisely the row number of the endpoint of the connected
line segment, if any.

However, assumption (*) above is not always valid. If po is not the endpoint
but a point somewhere in the midst of a line segment, then we have to use a
second accumulator acc2, only this time accumulating row by row in the other
direction. The other halves of the two accumulators, i.e. accl and acc2 where
—45° < 0 < 45°, are accumulated similiarly.

After the accumulation in both accumulators are complete, the contents of
accl and acc2 give the row number of the two endpoints, whilst accl + acc2 + 1
gives the length ( in unit row ) of the line segments. The highest peak may be
found from accl + acc2, and the line segment removed, following the DCHT
procedure.
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Since this transform accumulates row by row in a sequence, we refer it as
ordered accumulation. On the contrary, the order of accumulating points in
a HT is immaterial. In ordered accumulation, a row may be accumulated in
parallel, but we must accumulate rows in sequence. Thus the new HT is not
fully parallel ?

However, on closer scrutiny, this is not a very valid objection. When we say
that the HT can be implemented in parallel, it only means that the accumula-
tion of points can be implemented in parallel. After a high peak is located, the
detection of the actual line segment involves inevitably a line tracing, which is
sequential. In the new HT, the line segment is obtained as soon as the accumu-
lation is complete. The sequentiality is built in precisely to enable us to find a
line segment at one go. The new HT, however, has the advantage over the HT
since it has connectivity information as well.

3 Focus of attention

Consider an orientation 9 which is inactive. It is wasteful to look further in
that direction for data points. At best, we find data points we have decided
to ignore. At worst, since we 'have to' find out that they should be ignored,
it increases the computational complexity. In this section, we avoid 'noticing'
these points by the following focus of attention mechanism.

Consider the scenario for accumulating 'vertical' line segments again. Ini-
tially, all cells in accl, 45° < 9 < 135° are active. We define the angle bound
(9i,9u) = (45°, 135°). In general, let 6min and 9max be the minimum and
maximum 9 cell which is active. Then

(eueu) = {emin,emax) (2)

Let po be at column 0 and let i be the current row number. As shown in
Fig. 2, an angle bound is transferred into column bound (ci,cu) by

{cucu) = i{cot(6u),cot{9i)) (3)

for which a row accumulation only proceeds from column c; to column cu.

4 Probabilistic fixation

The DCHT selects arbitrarily the first point po ( see section 2 above ) with
respect to which accumulation takes place. Afterwards, the accumulated infor-
mation is "forgotton". This is undesriable as it leads to repeated accumulation
of the same information.

If a point pi is accumulated whilst the algorithm is "fixating" at po and
subsequently not removed, then there is no line segment in ipoPi at p;. Thus
the number of times that the point has been accumulated gives a measure
of the likelihood that a line segment may be found through the point. More
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succinctly, the probability of pi being a useful first point is inversely proportional
to the number of times it has been accumulated. This probability is used in
the fixation strategy to guide the selection of the first point.

5 Results

Fig. 3(a) shows a 21 x 21 binary image. We use the following parameter
settings : threshold = 6 (unit row), gapJhreshold = 2 (unit row), quantization
interval of 0 accumulator = 1°. (b) shows the dynamic angle bounds for the
'vertical' accumulator; (c) shows the dynamic angle bounds for the 'horizontal'
accumulator, (d) shows the image after a line segment ( or point ) is removed
... The final result is shown in (n). Lines displayed are least square estimates.
Notice how the angle bounds adjust dynamically to focus on the line to be
detected. Notice also that in (k) - (m), a point which does not belong to a
line segment is considered and the accumulation is terminated pretty early on.
Observe that all points outside the angle bounds as well as those that are not
connected are not accumulated. This reduces significantly the computational
complexity of the DCHT and also increases the S/N ratio of its accumulator.
The S/N ratio of successive lines are 0.53333 ( 0.51613 ), 4.25 ( 0.94444 ) and
5 ( 1.25 ). The bracketed figures are S/N ratio for DCHT in its original form.

Fig. 4(a) shows a 256 x 256 real image after Canny edge detection. This
image is quite challenging as there is much noise in the background due to the
carpet. Also, some sections of the cables are not straight. We set threshold
to 15 (unit row), (b) shows the final result. Almost all lines which belong
to the box are recovered. The upper edge el of the box is bridged to form a
long line segment. The shorter side edges e5 and el are also recovered. These
edges are hard to recover using HT, since their distances from the center of
the image are large and hence their corresponding maximum possible votes are
small [2]. The transform fails to recover line e3 since it is split into two with
an erroneous difference in angles, and their lengths are both very close to the
threshold. It is perhaps important to note that with the CHT, the performance
is little affected by what is present in the rest of the picture since it only looks
at a small dynamic connected locality of the image in its line finding. In this
context, we may also consider the proposed technique as a principled method
for curve tracing with two important differences : (1) it looks for parameterized
connected curves rather than just connected curves; (2) it has immunity towards
gaps and a principled way to decide how to 'jump across' gaps.

Fig 4(c) shows the outcome of applying probabilistic fixation as an "interest
operator". Here the algorithm "fixates" only on un-accumulated points. The
result does not degrade significantly. One reason is that for the DCHT, fixation
on any single point on a curve will suffice to recover the curve. From Table
overleaf, the efficiency is improved by a factor of 4.6. The success ratio per po
visited is improved by a factor of 6.0 ( in POP-11 on a SUN 4 ).
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method
prob.

arbitrary

CPU sec.
32.23
146.8

no. of line seg.
236
343

no. of fixation pt.
417
3665

ratio
0.566
0.094

6 Conclusions

Connectivity

This paper solves the fundamental problem of adding connectivity to the
Hough transform. A technique, known as ordered accumulation, is introduced.
One step ( step 3 in Algorithm ) is added to the HT. In return, only a small
portion of significant data points is accumulated, reducing the computational
complexity and simultaneously increasing the S/N ratio.

The ordered accumulation concept may be easily incorporated into the stan-
dard HT using two accumulators, storing this time the absolute row numbers
of the two endpoints. Note that this form of HT preserves all characteristics
of the HT but has the additional alertness to connectivity and possibility of
focus of attention. It is also clear that this form of connective HT may be
generalized to other parametric curves. Also, we anticipate that this form of
HT has only small area of Hough space active at one time. This allows memory
saving implemtation [1]. More research is needed.

This form of HT suffers no reduction to parallelism, as we have explained
above. On the other hand, if implemented using the DCHT as in this paper, it
has the same parallelism as the standard DCHT.

It is interesting to note that the connective HT is ideal for situations where
there is a temporal difference in the data. For example, in road following, the
upper rows, corresponding to the road ahead, appear later in time.

Psycholgical evidence indicates that contiguity, in particularly continuity,
is more significant than shape ( eg. see [9] ). This suggests in turn that shape
extraction should not be done independently of contiguity, which supports our
approach. Till now, the main stream of HT research, perhaps surprisingly, does
not take advantage of information offered by contiguity till post processing.

Comparision

We have implemented the standard HT with Risse's post clustering method
[8]. The result is comparable to Fig 4 (b) 1. CPU times are a) accumulation
1983.95 sec. + b) detection 4577.88 sec. In b) 48 of 247 line searches, or 19.4
%, finds no line segment. The connective HT ( w/o prob. fixation ) is 45 times
more efficient.

Active focus/shift of attention

A focus of attention method for straight lines was described. Instead of a
fixed rectangular window function [7] for all functions, the transform may be
regarded as using a variable window function related to the form of the function
to be detected and adapting the window shape to partial accumulation result.

Original method gave inferior result. As a result, we introduced the following heuristic
:- H : If at least one line segment is found during a line search, decumulate the segment only;
else decumulate the whole line.
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A probabilistic method for selecting the first point of the DCHT was re-
ported. It gathers statistics of previous accumulation and uses it to fixate on
"interest points". Results gave a significant improvement in the computational
efficiency of the DCHT for straight lines. It can be applied to other parametric
curves in general.

The use of focus of attention and probabilistic fixation reflects our desire to
modify the HT to make it consistent with the psychologically plausible active
vision paradigm. We believe that active vision has an important bearing in
healing the Achilles' heel of the HT, namely, its space-time complexity.
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