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Abstract

In this paper we present a formalism for the formation of self consistent,
hierarchical, "Low-Level" groupings of pairs of straight line segments
from which all higher level groupings may be derived. Additionally, each
low-level grouping is associated with a "Quality" factor, based on ev-
idential reasoning, which reflects how much the groupings differ from
mathematically perfect ones. This formalism has been incorporated into
algorithms within the "LPEG" software package produced at the Uni-
versity of Surrey. LPEG was developed as part of the Vision As Process
[Crowley et al., 1989] project. We present results of the application of
these algorithms to sets of line segments extracted from a test image.

1 Introduction

Grouping of straight line segments has been the subject of much investigation.
Most research in this field has been concentrated on forming perceptually signif-
icant groupings. The reader is therefore referred to commonly available biblio-
graphic databases on the subject with special reference to [Weiss et al., 1986],
[Lowe 1987], [Mohan et al, 1989], [Horaud et al, 1990], and [Faugeras, 1990]
and references therein. Many types of groupings of two or more line segments
have been proposed in the literature. In general the proposed groupings ei-
ther fail to allow the consistent formation of higher level groupings or involve
heuristics.

Let us first consider the possible relationship between any pair of lines.
Clearly they may either be collinear, parallel, or intersecting. When we con-
sider line segments we may further subdivide the parallelism relationship into
overlapping, and non-overlapping. The intersecting pairs may also be divided
according to whether the intersection point lies on either, both, or only one of
the line segments. These then are the complete set of relationships between two
line segments. Clearly all higher level groupings may be formed by combining
subsets of this set.

In this paper it is our aim to first define a formalism for the formation of this
set, and show how this formalism allows us to implement these groupings in a
manner useful for vision. In the first section we discuss what properties are im-
posed on algorithms for the formation of these groupings if they are to be useful
for vision purposes. In the following sections we discuss each of the proposed
groupings in turn. Associated with each grouping is a "Quality" factor based
on comparing the observed grouping with an ideal case. This factor greatly
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simplifies the control of image interpretation tasks and is defined separately for
each grouping in turn. We present results obtained using the "LPEG" soft-
ware package within which these algorithms have been implemented. Finally
we summarize our findings, and discuss this work in the context of a complete
vision system.

2 Low-Level Groupings
The most desirable feature of any proposed grouping is consistency. Strictly
mathematical definitions of parallelism, collinearity, and intersection ensure
this property. However so long as our definitions are consistent we need not
adhere to these mathematical definitions. We may choose for example to label
any pair of line segments forming an acute angle of 10 degrees as "parallel". To
ensure consistency we define "non-parallel" segments as those forming acute
angles greater than 10 degrees.

Self consistency is an essential requirement since it ensures that the proposed
grouping relations are independent of the order in which the line segments are
chosen. For the purposes of computer vision, scale independence is another
important requirement, since in general the conversion factor between distances
in pixels measured across an image is not known or is poorly defined. Finally
we also wish to be able to form a hierarchy of groupings which will allow us to
filter unlikely combinations at an early stage.

Parallel

Overlapping Non-Overlapping Intersecting Non-Intersecting

V L T \

Figure 1: Low-Level groupings within the LPEG system

Based on these requirements we have defined the Low-Level groupings shown
in the form of a tree structure in Figure 1. The set of straight line segments
forms the top level of the tree. In the first level there are the three main group-
ings, namely Parallel, Collinear, and Junction. At the next level the Parallel
grouping is separated into two further types based on whether the line segments
overlap. The Junctions are also separated at this level into Intersecting and
Non-intersecting types, based on whether the junction point resides on either,
both, or neither of the line segments forming the junction. The most important
distinctions are between the groupings at this level of the tree. The Junction
types are finally separated to form the lowest level of the tree according to the
acute angle between the line segments forming the junction. The characters
used to denote the junction types also reflect their form. These junction types
are especially useful when considering particular applications. For example if
we know apriori that the image may contain an L shape, such as for character
recognition purposes, the inclusion of L junctions as part of the hierarchy will
allow us to rapidly identify this structure. The distinction between intersecting
and non-intersecting junction types is an important one since it also allows
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us to hypothesize junctions between surfaces. Due to the generally poor seg-
mentation the formation of all these groupings requires a statistical model of
the feature extraction process, or at least a worst-case knowledge of the errors
involved.

The next four sections are devoted to the discussion of the various group-
ings at the lowest levels of the tree. In each case we present, and discuss, the
definition used in the formation of the grouping in the context of the above
requirements. Associated with each grouping is a "Quality" factor which en-
ables us to filter unlikely groupings at an early stage. We also show how this
"Quality"factor is computed and discuss its relevance in each case.

2.1 Overlapping Parallel Line Pairs
When the acute angle between any pair of straight line segments is below a
specified value, the line segments are considered as candidates for parallelism
or collinearity. Note that so long as we are consistent, this value is not impor-
tant. We have chosen a value of 0.06 Radians for this angle based on digital
straight line properties. Having filtered line segments which may form parallel
or collinear pairs, using the acute angle criterion alone, we now show how these
pairs may be classified as overlapping parallel.

Figure 2: Overlapping (2a) and non-overlapping (2b) parallel line segments

In the following discussion we shall make use of the parameters L,-, LP{, #,-,
o\ , and (Tf~, which represent the length, the projected length unto the "Virtual
Line", orientation angle, and standard deviation of the position of the end
points of the line segment along and perpendicular to its direction, respectively.
The subscript i is used for referencing the line segments. In general the standard
deviations are used as a means of incorporating the uncertainties in the line
segment extraction process into the labeling of the groupings at the lowest level
of the grouping tree. These standard deviations may be replaced by constants
without affecting the basic grouping algorithms. In order to avoid ambiguity
in the formation of the groupings we have restricted our analysis to those line
segments whose length is greater than the largest sum of any combination of
their <T{' , and af-.

Given the line segment pair L\ and Ul in Figure 2a we first attempt to find
the "Virtual Line" VL. VL is initially defined through its orientation and the
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point P through which it passes. The orientation angle of the VL is given by
the weighted mean of the orientation of the two line segments as defined by the
equation:

L1x91+L2x02 m

(1)j j ( 1 )
Li + L2

Note that we have not used the standard deviation of the orientation angles of
the line segments in the above equation since they are generally a function of
the line length. Now the x, y position of the point P through which the Virtual
Line passes are similarly defined by:

Li x xi + L2 x x2 , L\ x j/i + L2 x j/2 ,ON.
XVL = I7TT2

 and yvL = LTTT2
 (2)

where a:,-, and ?/,• indicate the x, y positions of the midpoints, Mi, of line Li,
respectively. We now compute the positions of the points PI, P2, P3, and P4
which as defined by the intersection points of perpendiculars dropped from the
end points of the line segments onto the Virtual Line. The end points of VL
are defined by the pair of points Pi, and Pj, from the set PI, P2, P3, and
P4, separated by the largest distance. These points define the length L\^ of
the Virtual Line. The line segments Li, and L2 are defined to be overlapping
parallel if

L $ < LPX + LP2 + all + a\ (3)
The symmetrical nature of the definition of such a grouping ensures self con-
sistency.

If the sum of the lengths of the two line segments is equal to twice the
length of the Virtual Line, and the orientations of the line segments are equal
these segments form a perfect overlapping parallel pair in a strictly mathemat-
ical sense. For vision purposes we wish to determine how closely the observed
pair deviates from this perfect pairing. Essentially we are attempting to deter-
mine how much evidence is available for such a perfect pairing by comparing
measured quantities with the ideal case. We now define a "Quality" factor for
overlapping parallel line segments which allows such a determination.

_ ... LPX + LP2-<T\-4
QuahtyovP = ^ - ^ (4)

Our definition also ensures that this dimensionless parameter is always in the
range zero to one. A value of 1.0 for the Quality factor implies a perfect
grouping. This form of the definition implies that the Quality factor for parallel
overlapping line segments will generally be > 0.5. The above definition is again
self consistent and has the desirable property that it degrades monotonically
as we move further away from the ideal case. Finally, as we shall shortly see,
the computation of the Quality factor for groupings involving more than two
line segments becomes greatly simplified.

The Quality factor, independent of the associated grouping, allows us to
condense a great deal of information. Since this factor has the specific mean-
ing above, it may be used for quickly indexing other types of symmetries or
asymmetries within the grouped set by simply calculating the required range
in Quality factor.

Sets of N overlapping parallel line segments in which all possible pairings
satisfy the overlapping parallelism criterion may be combined to form a larger
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set which we shall call an overlapping parallel bundle of order N. The associated
Quality factor is defined by:

T-^N «pN TP.,TP. Jl Jl

( 5 )

The denominator is essentially twice the sum of the lengths of the Virtual Lines
associated with each pair. This form of the definition for bundles retains the self
consistency property associated with pairs as described above. Note that for
the Quality factor to be meaningful for arbitrarily large bundles, the choice of
the type of overlapping parallel pairs must be uniform ie, all fully overlapping,
or all partially overlapping. If we store the Virtual Line parameters for the
overlapping parallel pairs we may compute this new quality factor directly
from information already available.

2.2 Non-overlapping Parallel and Collinear Pairs
Given the frame work described in the last section, the definition of non-
overlapping parallel lines follows naturally. In addition to the criterion involving
the acute angle between the two line segments, non-overlapping parallel lines
must also satisfy

Liji > LPi + LP* + 4+4 (6)
and the perpendicular distances from the point P in Figure 2b to the lines of
which LI and L2 are segments must be greater than the largest standard devi-
ation in the position of the line segments perpendicular to their direction (<r/-).
This additional criterion allows us to distinguish between non-overlapping par-
allel, and collinear line segment pairs. A collinear pair is essentially a modified
non-overlapping parallel pair such that the perpendicular distance from the
point P to both line segments is less than or equal to crj-.

We define a perfect non-overlapping parallel pair as one for which the sum
of the lengths of the line segments is equal to the length of the Virtual Line,
and the orientations of the line segments are equal. The Quality factor for this
grouping is given by

. LP1

QuahtyNovp =
We may also form bundles of N non-overlapping parallel line segments, using
the same pairwise criterion as for overlapping parallel lines. In this case however
equation 5 is no longer appropriate since the Quality factor for the bundle would
inevitably decrease as we increase the number of lines forming the bundle.
The appropriate form which still retains the self consistency, and monotonicity
property associated with the Quality factor for parallel overlapping bundles is:

Ef Td>i LPi + LPi ~ 4 ~ 4
Quality%ovp = —± '- - ^ (8)

maxj^j L{J
The choice of the type of bundle (step like, or staggered) is application specific.
Bundles of collinear lines and their associated Quality factor are also formed
in the same way. Pairs and bundles of collinear lines may be replaced by their
associated Virtual Line and such lines may be treated as physical lines for the
purpose of performing further grouping operations.
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2.3 V and L Junctions
A V junction is defined as any pair of line segments which intersect, and whose
intersection point either lies on one of the line segments and is less than of +aj-
away from the end points of the line segment, or does not lie on either of the
line segments. An additional requirement is that the acute angle between the
two lines must lie in the range 0m,n to 0max. In order to avoid ambiguity with
parallel or collinear pairs, 0m,n is chosen to be the same as the limiting angle
used to filter line pairs forming possible parallel or collinear groups. L junctions
are a special case of a V junction where 0m,n for L junctions is greater than
Omax for the V junctions, and 6max for L junctions is £. In order to avoid
ambiguity with A junctions we also label as V junctions any line segment pairs,
satisfying the above criteria for V junctions, the distance between whose closest

end points is less than the larger of of or <r^.
Now a perfect V junction is defined as one in which the intersection point P,

shown in Figure 3a, lies precisely at the end points of the line segments. Note
that there are now two Virtual Lines which share the end point P. The points
PI, and P4, denote the remaining end points of the Virtual Lines respectively.
We now define the Quality factor as

T Jl „! r J l /r-L
Qualityv Junction (9)

where LVLi(i =1 ,2) are the lengths of the Virtual Lines VL1 and VL2 displayed
in Figure 3a. In this case we have chosen to multiply the ratios of the lengths
of the lines to the lengths of the Virtual Lines since we are trying to penalize
pairings in which either line is far away from the junction point. The Quality
factor nevertheless retains the symmetry property described for parallel- line
segment pairs. The Quality factor for L junctions is defined in precisely the
same manor.

Figure 3: V (3a) and A (3b) Junctions

Since an infinity of shapes may be created using V junctions, the concept of
Quality as applied to an arbitrary bundle of N junctions becomes meaningless.
For closed sets of junctions however, such a definition is possible. The formation
of the closed sets is much simplified by flagging the end points of the lines as
the closer to, and the further away from, the junction point, respectively. The
flagging of the end points simplifies the the search for other types of bundles



124

such as triplets of lines sharing a common junction point. The Quality factor
for closed sets of combinations of V and L junctions, denoted as SN where N is
the number of lines in the set, is defined so as to reflect the amount of missing
information in the hypothesized closed set. The precise steps in the formation
of the closed sets is outside the scope of this article. However it suffices to
say that all relevant junction points required to close the set (eg. to form a
square or hexagon etc..) are first computed. This then allows us to compute
the circumference of the hypothesized perfect closed set, and hence the Quality
factor as

QualitySN = Vn r ' , (10>
2.0 x Circumference

Where the subscripts i, j refer only to those pairs of line segments which form
the sides of the closed set. Note that collinear line segment pairs may be also
be used in the formation of the closed set.

2.4 A and T Junctions
A A junction is one where the intercept point lies on one of the line segments,
and the line segments do not form a V or L Junction. Choosing 6min and
@max so that they have the same values as those used for V Junctions assures
consistency. T junctions are a special case of A junctions where 6min for T
junctions is equivalent to 9max for the A junctions, and 9max for T junctions
is i . There is only one Virtual Line involved in the definition of A and T
junctions as shown in Figure 3b. A perfect A or T junction is one in which
the intersection point lies precisely at the end point of only one of the line
segments. We define the Quality factor for A junctions as

Quality \J unction = T
 l (11)

where L\ is the length of the line which does not include the junction point,
and LVLI is the length of the Virtual Line. The Quality factor for T junctions
is defined in precisely the same manor as for A Junctions. It is more important
that we do not mislabel possible V or L junctions as A or T junctions, than
vice versa, since the latter may be easily rectified when we form higher level
groupings, but the former tends to propagate to higher levels. This is the main
reason for the inclusion of the additional criterion, based on proximity of end
points, stated in the last section.

3 Experimental Results

The above groupings have been implemented within the LPEG system. The
form of the definitions of the groupings allows many of the computations to
be performed in parallel. In addition each of the groupings themselves may be
computed independently. The best implementation of LPEG would therefore
be in a massively parallel environment. The left-most image in Figure 4, kindly
supplied by Dr. R. Horaud at the LIFIA institute in Grenoble, is that of a
Widget used for test purposes. The next two images are the results of the
Canny edge detector, and annotated extracted line segments using the Hough
transform, respectively. The extracted line segments have been allocated an
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identification number which is displayed as the annotation in the corresponding
image.

Figure 4: Image used for testing "Low-Level" grouping algorithms

The results of groupings with associated Quality factor greater than or
equal to 0.5, and using a limiting angle of 0.06 radians, are displayed in Table
1. The length of the line segments extracted using the Hough transform were
constrained to be above 10 pixels. Starting with an ASCII list of 39 extracted
line segments the grouping was performed in 0.66 CPU seconds (excluding I/O)
on a Sun SLC. Each column in the table contains the identification numbers
associated with line segments forming the grouping type indicated at the top
of the table. In order to show how the Quality factor may be used effectively in
filtering unlikely groupings, we have applied the algorithm to the same set of
lines and limiting angles used in the formation of Table 1, but using a limiting
Quality factor of 0.3. The results are presented in Table 2 and the corresponding
processing time was 0.57 CPU seconds.

4 Summary and Conclusions
We have also applied the algorithm to other lists of line segments extracted
from images of various indoor scenes. The computation time, using the same
limiting angle and, for limiting Quality factors of 0.5, range from 3 to 60 seconds
for a lists containing approximately 100 to 320 line segments. In conclusion
we believe that the formalism presented is sufficiently flexible that it may be
used in varied applications in which the user wishes to extract a limited set
of groupings from a set of line segments. The most important attribute of the
proposed groupings is the Quality factor. This parameter allows us to handle
the combinatorial explosion of groupings by focusing the attention of the system
on those groupings which are near ideal. In general we would initially look for
high Quality groupings, and use these to initiate new image understanding
tasks. Since we may determine a worst-case time scale for the formation of
the groupings, given the number of line segments in the image, the resources
which need to be allocated to the grouping process, and the limiting Quality
factor, may be easily determined. Current work involves the construction of
the intermediate level of the LPEG system which uses these groupings in the
formation of closed sets.
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OVP
67
78
79
89
13 14
22 24
26 27
27 29
29 31
29 33
30 32
30 33
31 33
32 33

NOVP
34
45
56
57
10 11
15 16
18 19
22 23
23 24
26 28
28 29
28 31
29 30
31 32

Collinear
27 28
29 32
30 31

L
10 29
11 28

V
3 33
5 33
6 24
7 24
7 30
7 32
9 15
9 24
9 31
9 32
10 33
11 13
11 14

V (contd.)
13 17
13 31
13 33
14 28
14 29
14 31
15 26
17 33

A
13 29
17 20

Table 1: Results of grouping of line segment features extracted from the image
presented in Figure 9. A limiting Quality factor of 0.5, was used to filter the
groupings. No T junctions were found.

OVP
22 24
26 27
27 29
29 31

NOVP
34
57
15 16
23 24
28 29
28 31

Collinear
29 32

L V
11 13
13 33

A

Table 2: A limiting Quality factor of 0.8, was used to filter the groupings.


