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Abstract

We present a supervised segmentation scheme in which a Bayesian ap-
proach incorporating a pyramid data structure is used. This formulation
leads to a significant simplification of the Spann and Wilson quadtree
segmentation algorithm [7] under the assumption that image classes are
normally distributed. A method for efficiently acquiring the parame-
ters of class distributions at each resolution level has been developed. It
involves estimating the class statistics on training sites at full image reso-
lution. The corresponding parameters at lower resolutions are computed
by predetermined scaling factors. The segmentation scheme is validated
on synthetic data and natural textures obtained from the Brodatz album

[1].

1 Introduction

Segmenting an image into spatially disjoint regions of uniform property has
been the subject of extensive research over the past decades. The prime aim is
to provide a symbolic description of the constituent parts of the image for scene
interpretation. The many different approaches to this topic can be classified
into distinct categories on the basis of either mathematical framework or image
phenomenon used for segmentation. Among them, statistical approaches such
as per-pixel classification have been widely applied [5].

However criticism has been raised against the approach of classifying pixels
based solely upon the statistical distribution of individual pixel intensity or
pixel features, on the ground that the spatial contextual information conveyed
in an image is not taken into consideration. Consequently, any spatial coherence
and localization of the regions which result from the classification is entirely
fortuitous. This may be the reason why these procedures tend to produce an
abundance of false regions.

Hence incorporating contextual or spatial information for improving classi-
fication reliability has been a major aim of recent research into this problem.
A number of methodologies have emerged of which multiresolution processing,
in which processing is carried out over a range of spatial scales of the input
image, has proved very promising in terms of computational efficiency [6, 7).
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We propose a new supervised segmentation scheme in this paper which
is closely related to the Spann and Wilson quadtree segmentation algorithm
[7] in terms of processing steps involved. For instance, both schemes involve
three processing stages such as generating a multiresolution representation of
an image, applying statistical classification to coarse resolution images and
refining the segmentation result in a ‘coarse-to-fine’ fashion in order to obtain
a full spatial resolution segmentation.

The key difference between the two algorithms lies in the way the segmenta-
tion problem is formulated. For instance, a non-supervised clustering technique
is used in the Spann and Wilson algorithm for the statistical classification pro-
cess which makes the algorithm ideal for general segmentation problems. How-
ever, in many image analysis applications requiring routine processing, each
image region represents one of a finite set of imaged phenomena whose sta-
tistical properties are approximately invariant over a large set of images. In
such situations the general segmentation scheme of Spann and Wilson is not
only computationally unnecessarily complicated but also may, as reported in
(4], fail to yield consistent segmentation owing to the unpredictable effect of
some of the parameters of their method which are automatically selected in a
data dependent manner.

Our objective in the present paper is to demonstrate that a supervised for-
mulation leads to a significant simplification of the Spann and Wilson algorithm
under the assumption that image classes are normally distributed and this gives
more consistent segmentation results. The paper is organized as follows: we
begin by describing the image pyramid formulation in Section 2. In Section 3
we discuss the potential problems in estimating the class statistics for reduced
spatial resolution image which are essential for implementing Bayes classifier at
each resolution level of the pyramid. Then we present a method for efficiently
acquiring the parameters of class distributions at each resolution level. Section
4 details the segmentation scheme. Section 5 shows some results on synthetic
data and natural textures obtained from the Brodatz album [1]. Finally we
conclude with several remarks about the proposed approach.

2 Image pyramid

An image pyramid [6] is a hierarchical data structure in which successively
reduced spatial resolution versions of a given image I(z,y) are stacked to form
a pyramid as shown in figure 1. The value held by an entity can be an integer
or a vector. The progressively reduced spatial resolution images are generated
recursively according to the following equation

I(z,y) = Y7y M(i,5) I (22 +4,2y + ) (1)

where M (i, j) is a 4 x 4 smoothing kernel or the generating kernel according
to Burt [2]. Ii(z,y) denotes the image value at coordinates (z,y) and pyramid
level . It is referred to by the term entity or node in this paper.

The 2-D kernel, M(i,j), is a product of a 1-D generating function M(-)
and its transpose, so that M(z,j) = M(i) - M(j) where M(-) is defined sub-

ject to the following constraints: Normalization: Y 2__, M(i) = 1, Symmetry:
M(-1) = M(2) = b and M(0) = M(1) = a, and Unimodality: a > b > 0.
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Figure 1: Pyramidal image structure

The corresponding constraints extend to the 2-D kernel, M (i, 7). Equation (1)
can also be written as:

f‘+ . w . )
I(z,y) =L _,- Eili,5) Io(2'z +i,2'y + j) (2)

where Ej(1, j) is a kernel which will be referred to as equivalent smoothing ker-
nels hereafter and where r;” and rj" denote the spatial extent of the equivalent
kernel. It means that the entity value, i.e. I;(z,y), can be determined directly
from the original resolution image Iy(-,-) by convolving with an appropriate
kernel E(i, j), instead of generating all the successive levels.

Ei(1,7), like M(.,-), is Cartesian separable, so that Ei(i,j) = Ei(z) - Ei(4)
where Ej(-) is related to M(-) by a recursive expression, i.e.

Ez) =YL _, M) Eiy(z—2-%), rf <z < (3)

L, #=0

with the initial conditions stated as Ey(2) = 0. sihierwiss "

Note that

Ei(z) = 0 for z outside the kernel domain [rj',r;"]. The indices, i and j, lie
between r} and r[, where rff = r}t |, + 2!, vy = rj_; — 2'-! with r} = 2 and
r; = —1. It should be noted that the equivalent smoothing kernel at level 1
1s equal to the generating kernel, i.e. E;(-) = M(-). These one dimensional
and two dimensional equivalent kernels inherit all the constraints applied to
the original generating kernel.

3 Estimation of the class statistics

To implement the Bayes decision rule with a pyramidal data structure, one
must know the class statistics at each level of the pyramid. However, direct
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estimate from the data at low resolution level of a pyramid is likely to give
biased estimates as we explain later in this section. Instead we introduce here
a method which can estimate the class statistics at each reduced resolution
level of the pyramid without recourse to the data at that level.

Let us assume that the entities of the full resolution image function I(z, y),
or Iy(z,y), constitute a set of random vectors {X} which are statistically inde-
pendent and identically distributed (iid) according to N(j, X) or N(ofi,oZ).
This implies that, for the moment, we consider a homogeneous image. Since
Ii(z,y) is obtained by a linear combination of normally distributed random
vectors, Io(-), as expressed in equation 2, then Ij(x,y) itself is normally dis-
tributed as N(;/,;X) with mean vector ;i and covariance matrix ;X. Now the
problem is how to obtain ;g and ;X

3.1 Potential Problems

In order to obtain an unbiased estimate of a class statistics, we require that
the data be statistically independent and identically distributed. However as
a result of the pyramid construction process the nodes at higher levels of the
pyramid are no longer independent. In figure 2, each node at higher level
of the pyramid shares half the population of its son nodes one level below
with its neighbouring nodes. Hence the statistical independence assumption
holds only when the nodes are separated by a certain distance. The distance
required monotonically increases as we move further up the pyramid. As a
result, we cannot determine the class statistics from the data at each level
since the estimates would be highly biased, but also we cannot estimate them
from the subsampled independent data because the sample size is not large
enough to provide sufficient statistical confidence for the results.
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1;(x)

Level 0

Io(x)
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Figure 2: Graphical illustration of the procedure to determine the node values
at various levels of the pyramid.

So far we assumed that the entities of the image function I(z,y) are drawn
from a single normal distribution. However the image function is usually com-
posed of several segments each filled with samples drawn from a distinct dis-
tribution. This gives rise to yet another problem when the image pyramid is
constructed, namely the segments at higher levels of the pyramid will contain
mixed population pixels. These originate from the kernel smoothing across the
boundary of two adjacent segments. The relative proportion of these mixed pix-
els rapidly becomes significant as one moves up the pyramid and can seriously
affect (bias) the estimated class statistics.
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3.2 Parameter inference

The idea of predicting class statistics for reduced resolution image from train-
ing data at full image resolution originates from the equivalence relation as
expressed in equation 2. Here a direct relation between the entity value at any
level to the original resolution image has been established. The consequence
of this relation between coarse and high resolution image entities is that the
class statistics at each resolution level can be expressed in terms of the class
statistics estimated from the full resolution training sites, i.e. N(oji,oX) by the
expression:

= 0.

Since we can obtain unbiased estimate of o/ and X with reasonable confidence,
so can we compute the class statistics at each resolution level by applying
equation 4.

+
2
1= ofi; 1T = fioX where f,:{ : ,,_,,_ Ei(i,5)* 1#0 @)

4 Segmentation Scheme

The proposed supervised segmentation scheme involves three distinct stages
of processing as shown in figure 3. The first stage called image pyramid
construction has been described in Section 2. In the following, the second
and third stage of the segmentation scheme are briefly described.

Image for Segmentation e the inputimage; which

can be a grey level or
ﬂ multi-features image
. Lhe original i lmage is input
ttom layer of
Image Pyramid pyramld in order to invoke
Construction the process

» the PROCESS is terminated

ﬂ at level (1) of the pyramid

¢ the SEGMENTATION PROCESS
Supervised is carried out at the top level of
oarse the truncated pyramid by using a
Segmentation Bayes classifier .
ﬂ o inherit class label from the father
node which have been classified
either by the coarse segmentation
]ﬁ,euﬂn:l;ry process or the boundary refining
g process at the higher e

* reclassify all the nodes which are
ﬂ within the boundary region

Segmented Image

Figure 3: Schematic diagram illustrating the proposed Supervised Segmenta-
tion Scheme.
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Stage 2: Supervised Coarse Segmentation

The supervised coarse segmentation procedure involves the following steps:

Step 1. Estimate the class statistics ¢ fi;, o Zi for each class from the full spatial
resolution training data where 0 and i stand for the pyramid level and
class identity respectively

Step 2. Build the pyramid for image I(z,y) to be classified

Step 3. Choose the level at which the classification is to be carried out, i.e. at
level |

Step 4. Generate the equivalent convolution mask E;(1, j) by specifying param-
eter a and then evaluate the corresponding scaling factor f;

Step 5. Classify the pixels of the reduced resolution image I;(z,y) by evaluating
the discriminant functions g!(-) given as

gl(Ii(z,y)) = log, P(wi) — }log [(2m)PloZi) - Dlog,[fi]
1 =+ 1Ty =1 - (5}
=g (= y) — o] E7 (L2, v) = oi).
where D is the dimension of the feature space and P(w;) is the a priori
probability of class w;.

Stage 3: Boundary refining

The boundary refining process is designed to restore the actual spatial location
of the region borders and can be outlined in the following general form:
Step 1. At kth level of the pyramid:
if nodes do not lie at the region boundaries

then give them the same class label as their fathers
else label as boundary nodes

Step 2. Nodes in the boundary region are classified by the Bayes classifier with
the corresponding class statistics at level k

Step 3. Terminate the process if full resolution has been restored; otherwise
proceed downward to (k — 1)th level and go to Step 1

5 Experimental Results

Two experiments are presented to demonstrate the proposed segmentation
scheme. The first uses synthetic data but the second shows segmentation results
using textured images composed of Brodatz’s texture regions.

Ezperiment 1

Consider figure 4. This 128 x 128 image is composed of three squares of different
size. The entities of these regions are defined by bivariate data vectors which
are drawn independently from three normal populations specified in the figure.
Figure 5 shows the scatter plot of the pixel vectors in the 2-D feature space.
It can be seen from the figure that the class density functions are overlapped
quite severely. Figure 6a shows the result of segmenting the bifeature image
at full resolution directly using conventional pixel-based Bayes classifier[5]. As
expected, the segmented regions are extremely ‘spotty’.

In comparison, we show in figure 6b the result of segmenting the above
bifeature image using the proposed algorithm. The pyramid representation of
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3 Object 1: 52x36 pixels in size
t.Lh. = (49,59)

Object 2: 51x51 pixels in size
t.Lh. =(30,30)
7] occluded by object 2

Object 3: 128x128 pixels in size
tlh =(1,1)
contains object ] & 2

*t1.h. stands for top lefthand comner

; . Object 3
Object 1 Object 2 (background)

sample size 1872 1897 12615
meanvector i, = [ 1260 pp=[1530 = | 1480
126.0 162.0 120.0

covariance
covani 5= [32%0 291.6] Ea= [456,0 00 ] e [m.o.m.o
291.6 648.0 0.0 486.0 -324.0324.0

Figure 4: The ground truth of the multiple classes bivariate feature image and
the statistical parameters.
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Figure 5: Scatter plot of the data in a two dimensional feature space
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this bifeature image is constructed using the convolution mask M/(i,j) with
a = 0.37. The coarse segmentation is carried out at level 3 of the pyramid
where the spatial resolution is equal to 16 x 16 pixels in size. As can be seen,
the algorithm has produced a segmentation in good agreement with the given
ground truth.

()

Figure 6: Segmentation results. (a) Segmentation result obtained by using
pixel based classification method applied to the full resolution image. (b) Seg-
mentation result obtained using the proposed algorithm.

FErperiment 2

Figure 7a-b show a test image which is 128 x 128 pixels in size and is composed
of two Brodatz’s textures. All textures are independently histogram equalized
into 256 grey levels. Texture features are then extracted by a set of Gabor
filters as described in [3]. The segmentation, for instance, is operated in a
multidimensional feature space rather than the original image domain. Figures
Tc—d show the segmentation results. It can be seen that the algorithm has
produced a segmentation in good agreement with the perceived boundaries.

6 Conclusion

A supervised segmentation scheme has been described in which a Bayesian
approach incorporating a pyramid data structure is used. The favourable fea-
tures of this approach are that the supervised Bayes classifier is known to be
a very effective tool for classification problems and that the pyramidal data
representation can relieve the computational burden involved in the classifica-
tion process. Furthermore, spatial information can be incorporated into the
classification process to overcome the weaknesses of purely statistical methods.

The key question in incorporating a Bayes decision rule with pyramidal
data structure is that the class statistics at each level of the pyramid must be
available. However, we have pointed out that unbiased estimates cannot be
achieved by direct calculation. Instead, a method for efficiently acquiring the
parameters of class distributions at each resolution level has been proposed.
Experimental results have been presented which demonstrate the power of the
method. However, this performance can only be expected when class statistics
are normally distributed and image segments are of commensurate size to the
level of noise corrupting the image.
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Figure 7: Texture mosaic. (a) and (b) show a texture mosaic and its grey level
coded ground truth respectively. (c) Segmentation result. (d) Original image
superimposed with the estimated region boundary
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