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Abstract

Snakes as originally proposed by Kass, Witkin and Terzopoulous are active
contour models which minimise an expression of energy to locate image fea-
tures. The original formulation involves hundreds of state variables and does
not submit to a real-time implementation. We explore the use of a B-spline
model of the feature to reduce the state space of the problem. Using a coarse
to fine feature search and Lagrangian Dynamics we demonstrate a real-time,
parallel implementation of B-spline snakes on a network of transputers.

1 Introduction

Energy-minimising Active Contour models (snakes) were proposed by Kass, Witkin
and Terzopoulos [8] as a top-down mechanism for locating features of interest in
images and tracking their image motion as long as the feature does not move too
fast. The snake is a computational construct, a dynamic curve able to track moving,
deforming image features. Since many snakes can be active at once, each tracking
its feature contour as a background process, they constitute a versatile mechanism
for direction and focus of attention, a second generation of Inoue's window system

[7]-

1.1 The snake model

The behaviour of a snake is controlled by internal and external forces. The internal
forces enforce smoothness and the external forces guide the active contour towards
the image feature. In their implementation for image curve localisation and tracking,
the external force is computed from the image intensity data I(x(s)), where the
position of the snake is represented by x(s), by differentiating an external energy:

External = " |VG(*) * I(x(s))\2 (1)

The internal energy at a point on the snake x(s):

^in _
ternal —
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is composed of first and second order terms forcing the active contour to act like a
membrane (avoiding gaps) or a thin plate (avoiding high curvatures) (controlled by
the relative values of a and /?). This serves to maintain smoothness of the curve
under changing external influences. The tracking behaviour of the snake is then
achieved by numerical, iterative solution of the elastic problem using techniques
from variational calculus.

Amini et al (1988)[1] have discussed the problems with this approach. These
include instability and a tendency for points to bunch up on strong portions of an
edge. They have presented an implementation based on Dynamic Programming
instead of variational methods which allows the inclusion of hard constraints which
can not be violated as well as the original smoothness constraints which do not have
to be satisfied exactly.

Snakes can be set up to be attracted to specific shapes. Yuille et al [10] use a
variant of snakes - deformable templates - to detect, describe and track features in
medical images. The feature of interest is described by a parameterised template
with a limited number of parameters, including constraints on the 2D shape of the
feature to be detected.

1.2 The B-spline snake

A more economical realisation can be obtained by using far fewer state variables
[11]. Blake and Cipolla (1990) [4] proposed cubic B-splines [5], which are deformable
curves represented by four or more state variables (control points). The curves may
be open or closed as required. The flexibility of the curve increases as more control
points are added; each additional control point allows either one more inflection in
the curve or, when multiple knots are used [2], reduced continuity at one point.

The B-spline is a curve in the image plane

where /, are the spline basis functions with coefficients q; - the vertices or control
points of the curve's "characteristic polygon". An energy function of the B-spline
snake can then be defined in such a way that it is a minimum when the snake is
positioned on a contour of high contrast.

B-splines have the desirable properties of local control - modifying the position
of a data-point causes only a small part of the curve to change; continuity control
- B-splines are defined with continuity properties; and that the number of variables
to be estimated is reduced to the number of control-points. The are no internal
forces since the B-spline representation maintains smoothness via hard constraints
implicit in the representation.

Blake et al (1991)[3] describe a real-time system in which B-spline snakes could
just "hang-around" in the image until they are swept by the motion of the camera
over a feature for which they have affinity. The range of the feature search (scale) is
controlled by inspecting image gradients around the snake using finite differences.
Gaussian blurring is unnecessary since image noise is not, as might be thought,
problematic in the unblurred image. CCD cameras have relatively low noise and
gradient is sampled at several (currently 20) places along the spline, and those sam-
ples combined to compute motions for the spline control points. The combination
of those samples itself has an adequate averaging, noise-defeating effect.
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2 Snakes with Dynamics

A principal claim of this paper is that tracking performance is greatly enhanced
if snake dynamics are carefully modelled. For example a snake can be given mass,
distributed along its length, and immersed in a simulated viscous fluid. The effect of
the mass is that the snake tracker now has a "memory" for its velocity and so prefers
to move in a continuous fashion. The subjective effect is dramatic. The snake seems
much "stickier" and far less prone to fall off fast-moving objects. (The viscosity
is necessary to avoid oscillatory behaviour.) The enhanced performance following
the incorporation of mass illustrates the importance of modelling the motion of the
3D object. The inclusion of mass amounts to an assumption that the object is in
roughly uniform motion across the image.

2.1 Distributed mass and damping

Consider the snake described by a quadratic B-spline with L spans (Figure 1), in
which the position in the tth span, x,, is a function of the control points Q,- =
(lii q1+l, cj,+2), the shape matrix M; and the snake parameter vector s = (1, s, s2)T,
where 0 < 5 < 1 over a single span:

x,(s) = sTM,Q, (4)

The equations of motion of a snake are derived using Lagrangian dynamics, defining
energy functions for each of the desired properties of the snake in terms of the global
control point vector Q = (qi, q2, • • •, QN)T• These properties are inertia, attraction
towards the feature and velocity damping. The corresponding energy functions are
derived by analysis of small elements ds of the snake spline, with a linear density
p, compliance k and damping A per unit s. These parameters are selected to give
critical damping so that the snake captures contours as rapidly as possible without
any tendency to oscillate.

2.2 Implementation

The resulting second order differential equation is integrated using an Euler scheme
for speed. The snakes are implemented on a network of transputers. Each span is

Figure 1: A B-spline snake
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modelled as a sequential process [6], executing a three step algorithm.

1. The span position and normal samples are determined, and used to search for
the feature using coarse to fine search.

2. The span communicates the effects of the feature to the rest of the snake.

3. The span uses the feature information from the rest of the snake to perform
the Euler step and find the new values of the snake control points.

3 Results

Figure 2 shows the performance of a six span snake following straight linear features
moving with constant velocity across the image. The root mean square distance be-
tween snake and feature is plotted against frame number. The snake underdamped
to illustrate its dynamics, hence the transient oscillation of the curves as it accel-
erates to catch up with the feature. Notice the steady state error in following a
moving feature. If an accurate localisation is required, for instance for motion mea-
surements, this can be done in a separate process. In the steady state the root mean
square error is proportional to the feature velocity, as would be expected from a one
dimensional control theory analysis.

Using the full processing capacity of 4 iterations per frame, the snake can suc-
cessfully track features whose velocity is such that the lag caused by viscous drag
does not exceed the radius of the tracking window. With a tracking window radius
of approximately 35 mrad (in a field of view of 0.3 rad) maximum tracking velocity
is about 3.1 rad/sec, for our system.

For a feature accelerating uniformly from rest, the snake will eventually cease to
track when the displacement between frames exceeds the tracking window radius.
The snake is therefore able to track a feature accelerating from rest at a maximum
of 4.3 rad/sec/sec.

Figure 3 shows the snake following a moving occluding contour in the image
plane. Note how it deforms over time to accommodate the shape of moving features.
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Figure 2: Root mean square error in position for an initially stationary snake tracking
a feature moving with constant velocity across the image. The snake is slightly under
damped to illustrate dynamics.
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Figure 3: A six span snake tracking a moving feature. The image is moving upwards
with an average velocity of forty-five pixels per frame.
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