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Abstract
This paper describes the application of Bayesian networks to the generation of
explanations for the evidence provided by one or more 1-D profiles.
Experiments with synthetic images and Cephalograms are described.

1. Introduction
Many image analysis tasks can be carried out by making inferences from the

evidence available in 1-D profiles taken from selected parts of the image, combined
with constraints defined by the user, and possibly estimated from a training set
[1,2]. A fundamental task is thus to label segments of the profile as being
"explained" by the presence in the scene of objects drawn from predefined classes.

2. Bayesian Networks
A Bayesian net consists of nodes, representing variables or sets of mutually

exclusive hypotheses, and directed links between the nodes, representing
constraints between the variables. Normally the net is sparsely linked, since
variables are only influenced or have a causal connection with a limited set of other
variables[3]. Associated with each node is a probability distribution over the
variable, and a conditional probability distribution over the "parents" of the node,
(where parents and children are defined by the direction of the link joining them).
Receipt of evidence about any variable causes a revision in our belief in other
variables via likelihood distributions, using the conditional probabilities and Bayes
theorem, as described below.

2. 1. A Bayesian Net for Multiple Segments
The basic building block of a profile explanation is derived from the grey level

model of an object class, which is used to explain one segment of the profile.

Figure 1 represents part of a network representing a multi-segment model.The

boxes containing P and S; represent the sets or spaces of hypotheses: The current

profile is p and The i-th segment of the profile is st. X{ represents the set of

hypotheses: The end of the segment explained by the grey level model G, lies a distance

x; pixels along the profile, where xtis an integer in the range [0,,/v-l]. The box

containing G, represents the set of hypotheses : The grey level model is characterised
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by the vector of parameters & , where for example & could be the mean and standard

deviation of a Gaussian distribution. The grey model & explains the grey-level

evidence on the segment *, between ^., and %.

Figure 1 - Bayesian net

2. 2. Shape and Grey level Constraints
The arrows connecting the variables in figure 1 represent constraints, such as

the requirement that each segment have a different object label, constraints on the
width of each segment and probabilistic models of the grey-level distribution on
each segment.

3. Network Transformation
Several techniques are suggested by Pearl [4] for the simplification and solution

of multiply-connected nets - clustering of variables, instantiation of selected
variables[5], and stochastic sampling. The first two techniques render the net
singly-connected, which allows a solution to be constructed by replacing the
optimisation by a sequence of nested optimisations, as described in the next
section. In this paper we proceed by introducing a compound variable
Zj = Gt ® Si ® Xi and by instantiating p to each of its possible values, producing

the network shown in figure 2. The set \Zt : i - 1,...,/) represents the unknowns

on the segments, and the set {P, : i = 1,...,/] represents the evidence applied to

each segment.
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Figure 2 - Singly connected net
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4. Belief Revision
The space of all possible solutions is defined by the variable

w - z, ® ft ® z2 ® p2 ® ... ® z, ® ft. We seek the most probable member w' ew,

given the evidence e e £ - Pt ® P2 ® .... ® ft, i.e.

/K^'IO ~ rnaxp(w\e) (1 )
w

We can exploit the single-connectivity of the net to recursively decompose this
expression. Using the notation W - W~ ® Z, ® W? , and E - Ej ® ft ® E* where

w~ - Z! ® Pi ® ... ® ZM ® ft_i and w* — zi+i ® ft+i ® ... ® z ; ® p,,

then

maxp(iv | e) = ^ maxl^ (21 ) ^ (z, )] O "\

where

a, ., (z,., (3)

(4)

The n, and Ai functions represent causal and evidential support for each value
of Zi. Effectively, each variable selects its optimal value (constrained by the optimal
values selected by other variables) by assembling optimal sub-explanations from
each sub-net connected to it. By combining these the variable is able to assemble
optimal sub-explanations for larger sub-nets, which are then passed to its
neighbours in the net.
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Figure 3 - Singly connected net representing three profiles
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5. A Multi-profile Net
The single profile model can be extended to a multi-profile model, representing

profiles across a putative boundary, with constraints between the first segments

of each profile, as shown in figure 3. Various constraints, expressed as conditional

probabilities /Kzi+Vi ) are used, ranging from a weak constant grey model

constraint, through a continuity constraint to a strong vertical edge constraint. The

belief updating procedure can be derived in a similar manner to that shown above.
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Figure 4 - Synthetic image Figure 5 - Single profile net result

Figure 6 - Constant grey model result Figure 7 - Continuity constraint result
Multiple-profile nets have been applied along selected boundaries of the

synthetic image shown in figure 4. This image consists of regions whose pixel
values have been drawn from Gaussian populations with equal variances and
differing means. After training, sets of adjacent, horizontal profiles were extracted
across the boundaries between the regions, and processed by the net shown in
figure 3. Figures 5-8 show the results of applying no constraint (single profile
nets), the constant grey model constraint, the continuity constraint and the vertical
edge constraint, respectively. The profiles have been colour-coded to show the
labelling of segments and the location of segment boundaries. Note the
improvement in location of the edges as the constraint is made stronger.
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Figure 8 - Vertical edge constraint result Figure 9 - Typical mis-labelling rates

6. Sensitivity and Localisation
The performance of an edge detector is characterised by its ability to detect

the presence of an edge (the sensitivity), and the ability to accurately locate the
edge. We considered images containing vertical stripes, 64 pixels wide, drawn from
two Gaussian populations, A and B, with equal variances. We can express the
sensitivity of the net by evaluating, at several signal-to-noise ratios, a "confusion"
matrix, consisting of elements of the form p(A\XB) where the characters in bold
represent the true labelling of the evidence.

Below a certain signal-to-noise ratio the net misclassifies masks containing
edges as pure A or B regions, because sizeable fluctuations in A (or B) are more
likely to explain the evidence than the presence of an edge. A typical result is shown
in figure 9. However, if more profiles are used, a point is reached where the weight
of evidence becomes too large to be explained away as a fluctuation.

pixels

-0.5

Figure 10 - Localisation accuracy Figure 11 - Localisation precision
The ability of the Bayesian net shown in figure 3 to locate an edge was examined

by using the same set of images as above. The net was constrained to find an
edge by feeding it with a priori, distribution which disallows values JC, a N, but

is otherwise uniform. The relative widths of the profiles and the stripes ensures
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that only one edge will be found. The accuracy of the edge location can be defined
as the mean of the localisation error, and the precision is defined as the standard
deviation of the localisation error. These are shown in figures 10 and 11. As might
be expected, the accuracy and precision increase as the signal-to-noise ratio
increases.

7. Edge Location in Cephalograms
The work of Davies [6] concerns the automatic location of key features in

cephalograms, such as that shown in figure 12. In particular, the chin is often
difficult to locate (because of the imaging technique), although hitlines which
straddle this region can be reliably planted.

Figure 12 - Cephalogram with detected Figure 13 - Model of the chin region
chin marked

A simple model of the image is shown in figure 13. Region A is the dark
background, B is the grey bone area (which can often appear indistinguishable in
appearance from region A), and region C is the tooth. The boundary of interest
is that between regions A and B or A and C. We can represent this using the
Bayesian net shown in figure 3, with profiles numbered from the bottom of the
image.The shape constraint is imposed using a modified version of the continuity
constraint. The net was trained on twenty examples, and found the chins on five
unseen examples, one of which is shown in figure 12 with the detected chin marked.

8. Discussion
Bayesian nets allow us to generate and train customized masks for boundary

detection. The architecture of the net shown in figure 3 is applicable to a variety
of detection problems, since it allows us to model the appearance of the boundary
and adjacent regions. We are able to incorporate constraints on the shape of the
boundary, and on the legality of various labellings of adjacent regions. The results
shown in figures 5-8 indicate that use of such constraints cause a significant
improvement in performance.
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Singly-connected nets were developed to allow the use of Pearl's belief revision
algorithm, but in any realistic case the constraints are more suitably modelled by
a multiply-connected net [5]. A variety of relaxation labelling algorithms are
available for such problems [7,8] but have the disadvantage that we lose the
theoretical justification provided by statistical decision theory.

The most severe difficulty with the current algorithm is that computational
effort is expended on generating accurate sub-explanations for all possible values
of a variable, irrespective of whether that value is likely to be needed. Since the
evaluation of one of the 20x40 pixel masks used in the "chins" examplar takes
about 90 seconds on a Sun 3/160, we must find solution techniques which direct
computational effort towards likely explanations. There is scope for carrying out
the processing in parallel, since.within each node, the evaluation of the A, n and
belief functions can be evaluated in parallel.

9. Conclusion
We have generated Bayesian nets to represent boundary regions for a mixture

of synthetic and real images. The belief revision algorithm was outlined, and
experiments on the synthetic images have illustrated the properties of the net under
a variety of signal-to-noise ratios, and with a variety of boundary shape
constraints. The net has also been used to model the appearance of a region of
a set of real-world medical images.
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