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Abstract

This paper discusses a dynamic method of edge detection which works
from a sequence of frames. Most edge detection algorithms process image
information statically, regardless of whether the application is static —i.e.
whether the input is a singular, unique image - or a dynamic sequence of
frames used for tracking or optic flow extraction. As many applications
are dynamic, such as robotics, autonomous vehicle control and satellite
tracking, it makes sense for edge detection processes to exploit dynamic
phenomena.

Employing dynamic processing offers a number of advantages, the
main one being noise reduction. This paper discusses a dynamic edge
detection process implemented as a network of simple processing units.
In addition to edge detection, the network simultaneously determines
optic flow and areas of occlusion and disocclusion. These areas provide
information on how the image view is changing, which is useful for such
applications as autonomous vehicle guidance. The integration of these two
processes helps overcome problems such as feature matching. This paper
describes mainly the edge detection process. Details of the optic flow
processing have been described elsewhere ([3, 2, 4]).

Following a description of the dynamic processing network, the results
of this method are compared to the static edge detection scheme of Canny
[1]. The network proves to be an efficient means of obtaining moving
edges when a sequence of frames are available. Finally a recent extension
for determining edges in images with multiple motions present is outlined.

The Advantages of Dynamic Processing

Noise Reduction

The dynamic method used in this network is very robust to noise distortion.
Conventional static methods determine edges at all intensity gradients with no
notion as to whether a given ‘feature’ has permanance. The network described
here extracts edges by exploiting the fact that noise does not normally correlate
between frames - i.e. noise at one point in an image is unlikely to be present
at the same point in the next image (or at a neighbouring point when consid-
ering motion). Whilst most correlation methods correlate statically-obtained
edge information in the spatial domain, this network uses temporal correlation,
both to reduce noise and to achieve determine motion. Movement (through
occlusion) helps to guide edge detection and vice versa.

If a certain percentage of a given image frame is statistically identified as
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noise, then the probability of noise correlation between frames can be deter-
mined. Firstly the probability of noise at a point (¢, j) in a single frame is:

P(Ngji} = Nd (])

where Nj; is the noise at (¢, j) at time ¢ and Ny is the percentage noise density.
Given that after each time interval At, a new frame is introduced, the proba-
bility of noise being correlatable at the same point is:

P(CNijyan) = P(Nijt) P(Nijrar)) (2)

where P(C'N) is the correlation probability. As the noise probability for any
single independent frame is the same, i.e. P(Niji) = P(Njj(14ar)), this can be
generalised for any sequence of F frames to give:

P(CNr) = (P(N))" = N (3)

Therefore, if information is integrated over a number of frames, the probability
of noise being correlated, and therefore interpreted as valid edge information,
is reduced exponentially with frame number.

The Model

The network, shown diagrammatically below, is a heterarchical network of sim-
ple processing units. It has an interwoven structure which allows a two-way flow
of information, thus motion and feature extraction occur naturally in parallel.
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Figure 1: Basic Network Structure

Temporal Processing

A group of input units are used in this network to detect areas of change in input
pixel intensity between frames. The response characteristics are determined
using an autoregressive filter with the following function:

Rije = (1 _a)-R\ij(t——l)_a<[Iz'jt“‘ Iij(t—1)|0]+ (4)



15

where R;j, is the filter response at point (1, j) and time t, [;;, is the input image
intensity under the same conditions, [a,b]t is the maximum of a and b, and
a € [0, 1] controls the degree of influence of the previous response.

When changes occur at the input of a receptor unit, R, it responds with a
signal ‘peak’ followed by a decay to a new steady-state value. The unit’s output
1s active whenever changes are occurring (and for a time afterwards, dictated by
@), due to the recurrent feedback present in the autoregressive filter. Below are
the outputs for a single R cell from a simulation of the movement (rightwards)
of a simple step edge for two different values of & (0.3 and 0.7). The simulation
also shows the response of the motion cells signalling leftward and rightward
motion. As can be seen there is no leftwards activity.
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Figure 2: Receptor Output for 1D Image Sequence

Discontinuities in unit activity provide information on the positions of ‘lead-
ing edges’ in a scene — the current positions of the edges of coherent moving
regions which can be interpreted as potential featural edges. The amount of
activity at a given time depends upon the displacement between frames and
upon the speed of adaption — a parameter of the input units. Figure 3 shows
the initial responses of the receptor units (o = 0.7 and o = 0.3) after the first
two frames from a sequence of a rotating plug.

Spatial Processing: Finding ‘Leading Edges’
Creating a Flow Web

The flow web is a structure which spreads receptor activity within a region
of units. The web links units capable of detecting edges with those which
determine motion. The two processes are so interlinked within this network
that it is impossible not to discuss some aspects of the motion processing stage.

The flow web consists of clusters of edge and motion units (with differing
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Figure 3: Receptor Output for 2D Image Sequence

sensitivities to orientation and velocity) arranged on a hexagonal grid so that
all clusters are equidistant. Known as vector units, due to their directional
sensitivity, each unit in each cluster is linked to the neighbouring cluster in the
direction of its sensitivity. It is through this hexagonal linking structure that
the gating actions occur which control both edge detection and flow extraction.

The unit sampling is not at a pixel scale (it is not necessary to determine
the flow field everywhere in the image, although relatively close sampling is
necessary for accurate edge finding). If the link between two vector units, from
(a,b) in the direction k at time ¢ is represented as Lgpp¢, then:

by

Lavkt = Labk(t—at) Z Z Rryt. (5)

r=ay=h

where Rgy¢ is the input receptor unit at (z,y), (ai, by) is the position of the
neighbouring vector unit in the direction k, and the summation is pixel-wise
along the direction of the link.

Lateral Interaction

As well as receptor unit activation, the lateral connections from neighbouring
links influence which motion and edge units produce an output. There are three
main interaction rules, but only the one directly relevant to edge detection is
discussed here (see [2] for more details):

Veclor units with no current input activity cannot influence neighbouring units.
This rule is used to isolate ‘leading edges’. To explain this further we need to
consider the notion of gating used to extract optic flow and moving edges.
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Gating: Edge Activation for Static Backgrounds

Gating 1s the process of unit activation due to the activity present in connected
units. For this network gating occurs when the activity levels of the links
between two motion units are different — i.e. an activity gradient exists. In
this situation a flow vector response for the motion unit with sensitivity in the
direction of the link’s orientation is created with an amplitude proportional to
the gradient. Activation thus occurs amongst motion units in the direction of
decreasing input activity. Using the labelling strategy established earlier, the
two links into a unit at position (a,b) are given by, La,p,%¢ and Lg,p, k¢ where
(ay,by) is the position of the cluster before the motion unit (in the direction k),
and (ag, by) cluster position after in the opposite direction &' (i.e. back to the
unit).

For gating to occur an activity gradient must exist between L, 4 4 and
La,b,kt and Rape must be active. These constraints are satisfied by:

Mapks = Rapt-[Laysykt = Lagboknt, 0] (6)

where M,p,; represents the motion unit output.

If gating 1s confined only to those units with zero potential on one side, then
vector units will only be activated at the discontinuities of movement areas,
some of which will be leading edges. The edge links are activated directly by
gated motion units which, in turn, respond to motion discontinuities that could
represent moving edges.

Reducing Ambiguity: The Advantage of a Multiple Adapiion Rale

Having multiple adaption rates (i.e. variations in @) amongst the receptor units
can help in overcoming a potential ambiguity which occurs when considering
all discontinuities as moving edges (due to the fact that adaption occurs over
a period of time, so not just recent movement might be interpreted as edge
movement).

Representing fast adapting R units as I units, and slower ones as S, then
the following can be stated:

1. At a given position (a,b) if Sas 1s active and Fy is inactive, then motion
causing the adaption process 1s not recent.

2. If S4p is inactive and Fg; is active, then the motion causing the adaption
process is very recent and positioned very near to (a,b).

3. If both S, and Fy are active then motion is recent, though the positioning
of the edge might be offset slightly depending upon the activity of neighbouring
F' units.

In the last two cases edge units can be activated with a reduced possibility of
ambiguity.
Activating Fdge Units

Initially all units within a potential leading edge cluster (as defined by the
above criteria) are activated to the same degree (proportional to the motion
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information present). If the edge link at (a,b) with ortentation k is represented
as Eapre, then:

Eabk! V k = maa:(Mabk;) (7)

where maz(z) implies the most active umit within the unit cluster z.
Active units are linked into coherent structures by integrating activity be-
tween units using three main interaction rules:

1. Any incorrect contour-parallel motion activity can be suppressed by suppress-
ing molion activity ‘along’ leading edges.

If Egpke + Easbokit # 0 then Mgpre — 0.

where (a1, by) and (ag, b2) are the positions of neighbouring units each side of
(a,b) along a link with orientation k. This suppression is important in that
spurious flow web activity will build up strongly along straight edges creating
strongly-gated motion at the corners of such edges.

2. Any active edge link between motion units with common motion components,
should be enhanced.

k

Eaybikt = Eabkt + Z Mapki-Ma, b,k (8)
d=1

The 3~ is a measure of the similarity in motion vector distribution between
clusters at (a,b) and (ay, b1); the closer the distribution, the stronger the link.

8. Each motion vector unit in each cluster suppresses its opposing unit to a
degree proportional to its own activity.

This ensures that neighbouring motion units with no common motion compo-
nents suppress active edge links.

Mapkt = [Mapke — Mapint, 0]* (9)

Results

The edge unit output of this network 1s shown in Figure 4 for comparison with a
popular static segmentation method, that of Canny [1] *. The Canny algorithm
was tried with a number of standard deviations and the best result used for the
comparison. The result for the network is after three frames — i.e. the Canny
was applied to the third frame in a sequence of a moving object. As can be
seen, the network produces far fewer spurious (noise-induced) edges.

IThanks to Alistair Bray for supplying the Canny image.
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Figure 4: Edge Detection Comparison: Canny and this Model

Extensions to this Method

The method described in this paper is designed to determine edges in images
in which the background is static. Recent changes have been made to produce
a model capable of segmenting regions with differing movements in a sequence
with more than one moving object.

The main theory behind this extension is to detect the coherence of areas of
image motion for a given sensitivity of standard comparator motion detector.
Motion sensitivity is controlled temporally by the filter variable «, and spatially
by the distance between motion detector inputs, d:

Mijre = |Rirjoee — Rijr(e—1)| (10)

where M;ji¢ is the motion cell activity at point (z, ) in the direction k, and
i', 7' is the cell positioned a predetermined distance from (7, j) in the direction

The flow web now consists of clusters of motion units (with differing sensi-
tivities to velocity) arranged on a hexagonal grid so that all clusters are equidis-
tant. Known as vector units, due to their directional sensitivity, each unit in
each cluster is linked to the neighbouring cluster in the direction of its sensitiv-
ity. It is through this hexagonal linking structure that the gating actions occur
which control edge detection, occlusion and flow extraction.

Spatial Processing: Determining Motion Energy

Flow web activity represents the spatial coherence of motion detector activity.
Edge detection involves the determination of changes in coherence with time
through the notion of occlusion. The flow unit sampling is not at a pixel scale (it
is not necessary to determine the flow field everywhere in the image, although
relatively close sampling is necessary for accurate edge finding). A measure of
coherence is obtained at each flow position (a, b) using the following measure:

M,
Fapee = Wubjt—— (11)

k=1 abkt
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where Fgpry 1s the flow web value at sample point (a,b) and each direction in
each flow web cluster is represented as an integer between 1 and k., — which
for current implementations is 6.

Temporal Processing: Determining Edges

The theory used to achieve dynamic segmentation is based upon the Gestalt
notion of common fate — areas with similar motion characteristics are statis-
tically likely to belong to the same object. Therefore areas of image which
are spatially close, and have similar coherency measures (as defined by Fipre
above) can be segmented into a single region of movement.

Finding Occlusion and/or Disocclusion

Edges are deemed to exist at temporal changes in motion coherence — i.e. at
points where one surface is somehow occluding or disoccluding another. At
each flow web position exists, as well as a cluster of flow/coherency cells, a
cluster of dis/occlusion detecting cells:

Oabkt = Favkr — Fapr(e-at) (12)

where Ogpy 1s the dis/occlusion at (a,b) in direction k.

The use of the concept of occlusion is useful in that it allows for more than
one form of movement to be detected within an image at any one time. For ex-
ample, the movement of an object in one direction along with the simultaneous
movement of the background in another.

Determining Dynamic Fdges

Edges are assumed to exist in regions of dis/occlusion, in the minimum direction
of occlusion:

k=kmax

Eake= Y [Oabrs, 01 (13)
k=1

where Egpr¢ 1s the edge activity at point (a,b) and k is the orientation of the
detected edge segment.

Conclusions

To conclude, this network achieves edge detection (and the extension deter-
mines areas of occlusion and disocclusion) in an efficient manner. The images
contain less noise than those obtained by static means and the method would
be efficient for any dynamic applications where only moving edges require de-
tection. The distributed nature of the network would also allow for a parallel
implementation, making real-time frame-rate processing a definite possibility.



21

References

[1] J. Canny. A computational approach to edge detection. IEEE P.A.M.I, 8,
1986.

[2] H. Tunley. A neural network model for dynamic image processing. C.S.R.P.
166, School of Cognitive and Computing Sciences, University of Sussez, 166,
1990.

[3] H. Tunley. Segmenting moving images. In Proc. Int. Neural Networks
Conference (INNC90), Paris, France, 1990.

[4] H. Tunley. Dynamic image segmentation and optic flow extraction. In Proc.
Int. Joint Conference on Neural Networks (IJCNN91), Seattle, USA, 1991.



