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Abstract

Real-time vision can be organised as a sequence of discrete observations,
or focal probes, that gather scene information critical to the vision task.
Such selective analysis simplifies computations by isolating signal compo-
nents, and reduces the data load by avoiding unimportant image detail.

I outline a sequential approach to the analysis of image motion. The
approach uses selection mechanisms analogous to foveation and eye track-
ing in human vision to isolate motion components one at a time. Each
observation estimates motion of a single patch undergoing simple trans-
lation. But a sequence of observations can interpret complex patterns
containing discontinuities and transparency.

Computations are implemented within an image pyramid to provide
direct selection of signal components in space, time, resolution, and ve-
locity.

1 Introduction

It has often been observed that systems capable of performing challenging vision
tasks in real time will need to perform a great many computations in parallel.
Only through parallelism will it be possible to complete required processing in
time to respond to events in a constantly changing visual world.

But real-time vision also requires focus-of-attention strategies that are in-
herently sequential. Objects and events of interest tend to be localised in space
and time. To be efficient, a system must direct its sensing and computing
resources to just those regions of a scene that are critical to its task, while
avoiding unimportant detail. To achieve such selective processing, complex
tasks must be performed in small steps. Then partial results can be used at
each moment in time to direct subsequent observations and analysis.

While focus-of-attention analysis avoids wasting effort on unimportant im-
age regions, it also simplifies the processing that must be performed in regions
of interest. Processing steps are performed on isolated segments of the image
signal that are much less complex than the signal as a whole. Relatively simple
algorithms can often obtain precise results very fast.

In this paper I outline a dynamic, focus-of-attention, approach to the anal-
ysis of image motion. The system builds and modifies its interpretation of
motion in the scene through a sequence of observations, or focal probes. Each
observation is directed to a region of the scene that is expected to contain im-
portant information. A basic selective stabilisation algorithm is applied in that
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region to determine the major component of motion. Subsequent observations
provide additional components and these are assembled into an interpretation
of scene motion.

Selection mechanisms analogous to eye movements in humans are used to
isolate signal components in space, time, resolution, and velocity. Control of
these signal parameters is achieved by implementing the basic motion estimator
within a pyramid structure.

2 A System for Dynamic (Focus-of-Attention)
Analysis

The overall organisation of a dynamic vision system is suggested in Figure 1.
Again, interpretation of the scene is organised as a sequence of observations.
Each observation itself entails a sequence of steps that are indicated by boxes
in the diagram. Inputs to the system include both camera signals and a specifi-
cation of the vision task to be performed. The system builds and maintains an
internal world model that contains its current knowledge of the observed scene.
As events unfold in the world, and as the needs of the system evolve, the system
seeks to update its world model by gathering additional information. This is
done through further directed observations.
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figure 1: System for dynamic focus-of-attention analysis.

The cycle begins with the "choose next" box. Here a decision is made on
what observation is most important for the system to undertake at the current
moment in time. The decision is based on the task requirements, the system's
world model, and alerting signals.

The designated observation is then carried out. This may entail manipu-
lation of the sensor to shift its direction of gaze or to track an object. It also
entails selective processing of the sensory signal. Here the basic computation
performed is motion estimation, but more generally an observation may entail
any of a number of early vision functions that require signal level computations.

Results of the observation are then interpreted in terms of objects and
events in the physical world. Interpretation is based in large part on the current
contents of the system's world model, and results of the interpretation are used
to update that model.



Once new information has been entered into the model the process begins
again, with the determination of the next observation to be made.

In the present paper I am concerned primarily with computations performed
in the "observation" box that can serve motion analysis. It is appropriate, none-
the-less, to show how this module fits into an overall vision system. The basic
computation is one that isolates and estimates a single motion component at a
time. A larger system is assumed that will assemble these components into an
interpretation of scene motion.

3 Selection Mechanisms in Motion Analysis
A basic requirement for selective image analysis is that it be possible to isolate
segments of the incoming image signal that may contain essential information.
In the case of motion analysis there are at least four mechanisms for signal
selection: isolation in space, isolation in time, isolation in resolution (or scale),
and isolation in velocity.

These may be understood in part by analogy to human vision. A human
selects the spatial regions of the visual world he observes, and the time in-
tervals for these observations, through a sequence of saccadic eye movements.
Similarly, a human can isolate an object moving at a particular velocity by
tracking it with his eyes. The graded resolution of the eye itself, as well as the
spatial-frequency tuned "channels" within the brain provide mechanisms for
controlling resolution.

These same selection mechanisms can be implemented in computer vision
both through mechanical and optical control of the sensor and electronic pro-
cessing of the resulting signal. Electronic processing provides flexibility that is
not available to humans. Multiple focal analysis regions can be defined at any
moment in time, and these may be moved independently of one another and
changed in size and resolution from one moment to the next.

The pyramid data structure provides a natural framework for selective signal
processing. Focal analysis regions are defined and shifted within the visual scene
and resolution is controlled simply by shifting analysis to corresponding regions-
of-interest within a pyramid representation of the image. This is suggested in
Figure 2. Here a sequence of observations made of a road scene are shown
on the left. Motion analysis of a typical observation sequence would begin at
low resolution within a large analysis region and then move to high resolution
within small analysis regions. The corresponding data within a pyramid is
shown on the right.

The pyramid data structure also provides a natural means for electronically
controlling the range of velocities selected for analysis. Motion estimators, such
as the one that will be described in the next section, typically can detect image
motion only when frame to frame displacement is not too large. This velocity
limit depends on the wavelength, or spatial frequency content, of the image
signal being processed.

This relationship is shown in the spatial/temporal frequency domain in
Figure 3. A pattern moving at uniform velocity v appears as a tilted plane
with slope —v in this diagram. Two such patterns are indicated in the diagram,
moving at different velocities.

If the estimator is implemented within a pyramid, then this input signal



Figure 2: Control of the position, extent, and resolution of the focal analysis
region within a pyramid structure.

will be restricted to a band of frequencies corresponding to the pyramid leve
used These bands are indicated by vertical lines in the diagram Ten}p°™[

frequencies are also limited by the computation to be within a band bounded by
w = 0 and \w\ < 4- (r is the time between successive frames). The intersection
of the spatial and the temporal pass bands defines a selection band shown as
the shaded region in the figure. The motion estimate is based on that portion
of the signal that falls within the selection band. Thus no estimate is obtained
if a particular pattern is moving so fast that its spectrum falls outside the
band However, performing analysis at lower resolution levels of the pyramid
moves the selection band towards the origin, so that it will accommodate faster
motion.

Motion selection occurs when there are two differently moving patterns in
the analysis region, one of which falls within the selection band while the other
falls outside the band. This is the case illustrated in the figure.

The coarse-fine motion estimation algorithm described below automatically
finds conditions that separate two components when they occur within the
analysis region.
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Figure 3: Velocity selection within a pyramid structure.



4 Estimating Component Motion

While motion in the visual world can be quite complex, when viewed locally
within a small window it generally appears as simple, uniform translation. Ex-
ceptions occur at motion boundaries and in regions of transparency. There
the scene can generally be modelled as the sum of two differently moving pat-
terns. We define a motion component as an image pattern that can be modelled
as undergoing uniform translation when viewed within an appropriately sized
window in space and time, and at an appropriate resolution. The complex
motion within the scene as a whole is modelled as a patchwork of these basic
components.

Motion components defined in this way may overlap within the image. The
extent of a given component depends on the resolution at which an image is
observed. For example, a tree observed at coarse resolution from a moving car
may appear to be translating uniformly past the observer. But when the tree is
observed at higher resolution, individual branches may appear to move relative
to one another. Components also overlap in the case of transparency, where
one pattern, such as a reflection, appears superimposed on another.

Motion analysis may be formulated as a sequence of observations in which
estimates are obtained for one component of motion at a time. The motion
estimator, a process implemented in the "observation" box in Figure 1, de-
termines the translational component of motion within the region designated
by the "choose next" box. The motion estimation process may also provide an
indication of deviations from uniform translation within the analysis regions.

As an example, component motion estimates can be estimated effectively
through a selective stabilisation procedure [2]. This type of motion estimation
algorithm determines motion by finding that displacement of the first image of
a pair that brings it into alignment with the second. The shifted first image is
then "stable" with respect to the second.

In the stabilisation algorithm, a motion estimate is obtained as a sequence
of refinement steps. At step k the first image is shifted towards the second by a
displacement corresponding to estimated velocity Vk-\ obtained at the previous
step. A computation is then performed to determine residual motion, Avk- The
velocity estimate is updated, v^ = Vk-i + Av, and the cycle is repeated.

An estimator that seeks to minimise the mean squared difference between
frames is given (in one spatial dimension) by [5]:
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This estimator can be represented in the frequency domain by [4]:

s J sin(wsu)sin(2'!rTw)\I(u)\'2du
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This representation reveals the dependance of the estimate on spatial and
temporal frequency characteristics of the signal, as shown in Figure 3. If analy-
sis is performed at pyramid level I, then the power spectrum |/(u)|2 is confined
to a corresponding frequency band. The term sin(2vTw) may be interpreted



Figure 4: Selective motion analysis used to detect a moving person from a
moving vehicle.

roughly as a temporal filter with pass band between w = 0 and |K;| — -^.
Spectral energy sums incoherently for \w\ > ^.

Again, it is expedient to implement the motion estimator within a pyramid
structure. The computation normally starts at a relatively low resolution level
where the estimator can accommodate a wide range of velocities, then proceeds
in steps toward high resolution where precise motion estimates are possible, but
only for a very narrow range of velocities.

An important property of this motion estimation procedure is that it tends
to select just one motion component even when two differently moving patterns
occur within the analysis region. Once one motion has be determined, the cor-
responding pattern can be largely removed from the signal through a shift and
subtract procedure. The second motion is obtained by applying the estimator
to a sequence of difference images [1].

5 Examples

Two examples will illustrate selective analysis of image motion. The first is
an application to vehicle navigation where motion can be used to detect other
moving vehicles as well as obstacles in the road [3]. Precise motion analysis need
only be performed in the portion of the camera's field of view that contains the
road. However, this analysis can be quite challenging because small differences
in the motion of an object and its background must be detected while the object
and background appear to move rapidly due to the observer's own motion.
Sensitivity for differential motion is achieved through selective stabilisation:
the scene is first stabilised within the analysis region, then detailed analysis
reveals small relative motions of interest.

Figure 4 is one frame of a sequence taken from a car moving down a rough
country road. The dominant motion in the resulting video is due to camera
bounce. In addition, there is significant parallax motion of the trees along the
side of the road. Finally, there is motion of a person walking across the road
in the distance. The task of the vision system is to detect potential hazards to
driving, such as the person in the road.



Figure 5: Selective motion analysis is used to separate the image of a picture
on the wall from the reflected image of a person looking at the picture.

A three step procedure can be used to isolate the moving person. First, an
observation of the entire scene gives the system an estimate of image translation
due to camera bounce. The sequence is effectively stabilised based on this
motion. Second, an observation made within an analysis region centred on the
road in the distance stabilises this region in isolation from the differently moving
foreground trees. Finally, difference images and "change energy" computed
between frames of the stabilised road reveal motion of the person. This change
energy image is shown in Figure 4b as an inset into the original image frame.

The second example shows selective motion analysis used to separate dif-
ferently moving transparent patterns [1]. The source image sequence is of a
picture hanging on a wall with the superimposed reflection of a person observ-
ing the picture. These two patterns are moving with respect to one another in
the video sequence. One image in the original sequence is shown in Figure 5a.
Application of the motion algorithm to this sequence first yields an estimate of
motion of the hanging picture. If this estimate is used to construct a sequence
of difference images, a second application of the motion algorithm, now to the
difference sequence, yields an estimate of motion of the reflected image. (These
steps can be repeated to further refine the estimates of both motions) Difference
images are shown in Figure 5b and 5c. Note that the reflected person is hardly
visible in the original image, but is clearly revealed when the video sequence is
stabilised with respect to the picture and difference images are formed. This ex-
ample is particularly interesting as it shows component selection in the velocity
domain. The two patterns cannot be separated spatially.

6 Summary and Observations

I have outlined an approach to image motion analysis that interprets complex
motion one component at a time. This approach is particularly suited for real-
time vision because it provides a means for selecting the critical regions of a
scene in which detailed analysis should be performed. The system maintains
efficiency by directing its resources to just these regions. At the same time
component selection reduces the complexity of data processed, so simplifies
the computations that need to be performed at each observation. Although
observations are made one at a time, the resulting analysis can be both simple



and fast.
Finally, it is interesting to note that there is growing interest, particularly

within the "active vision" community, in camera systems that can achieve signal
selection through mechanical and optical means. For example camera heads are
being developed that allow a vision system to mechanically rotate the camera
to shift gaze and track objects. Novel camera sensors are also being developed
that have graded resolution from the centre to the periphery, as in the fovea of
the human eye.

To date, electronic processing has provided the most successful means for
rapidly shifting visual processing within a camera's field of view. A general
purpose "vision front end" should combine these mechanical, optical, and elec-
tronic means of signal selection. Processing within the camera head could
include a pyramid generating element, for example, to allow ready control of
resolution and field of view. It could also include a basic motion estimation
element, such as that described here, to allow effective isolation of signals in the
velocity domain through selective stabilisation. Several components of such a
general vision front end are now under development at David Sarnoff Research
Center, including a chip to perform pyramid processing, and hardware for video
rate motion analysis.
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