
A Parallel Path Planning Algorithm for Mobile Robots

Chang Shu and Hilary Buxton
Department of Computer Science

Queen Mary and Westfield College

University of London, El 4NS

This paper presents a path planning algorithm for mobile
robots. We introduce a parallel search approach which is based
on a regular grid representation of the map. The search is
formulated as a cellular automaton by which local inter-cell
communication rules are defined. The algorithm is made
adaptive by utilising a multiresolution representation of the
map. It is implemented on AMT DAP 510, which is a SIMD
machine.

I. Introduction

A primary task in robotics is to plan collision-free path in
cluttered environments. The problem can be stated as: Given
the initial and desired final configurations of an object in two-
or three-dimensional space, and given the description of the
obstacles in the space, determine whether there is a continuous
motion of the object from one configuration to the other, and
find such a motion if one exists.

Previous methods for path planning can be divided into two
categories by the way they model the environment. Methods in
the first category are based on geometric reasoning in which a
precise geometric model of the environment and of the moving
object is required. These kind of models can be obtained from
CAD systems. In this paradigm, path planning is an once-only
off-line process. A great deal of research has been devoted to
this situation, e.g. [1] - [5], [8], [9], [11]. While these methods
are basically designed for manipulator path planning which
requires precise and repeatable paths, they are not suitable for
mobile robots where the requirements are different. A mobile
robot is often equipped with some sensors such as a TV camera
associated with a computer vision system. Its knowledge of the
environment is generally incomplete and imprecise. It has to
plan paths for the area it has seen. Therefore, path planning, in
this case, is an on-line real-time process.

Methods in the second category are designed for mobile
robot path planning. Thorpe[10], Kambhampati and Davis'
melhods[6] belong to this group. In [10] Thorpe uses aregular
grid search method and in [6] Kambhampati and Davis pro-
posed a quadtree representation of the environment. They all
use a computer vision system or image data as sources of the
world model.

Note that all of the above mentioned methods ultimately
reduce the path finding problem to a graph search. For ex-

ample, in the configuration space method[9], the search space
is the visibility graph. Usually, the A*or Dijkstra's algorithm
is used for searching the graph. The main drawback of these
methods is they have a big overhead for the construction of the
vertex graph. The best algorithm so far constructs the graph in
time 0(r) where n is the number of vertices of the obstacles[15].
Another disadvantage is that when working in a complex
environment the search space becomes so huge that it is not
applicable to a real-time mobile robot.

The potential field method[7], which also belongs to the
second category, uses artificial potential field applied to the
obstacles and goal positions and uses the resulting field to
influence the path of the robot which is subject to this potential.

Only very few papers in the literature discuss parallel
algorithms fortheproblem. Witkowski[17] suggested a method
which is based on a cellular representation of the environment
and uses a parallel searching algorithm. More recently,
Steels[12] suggested a similar approach which states the prob-
lem in a more general way by viewing path planning as a
dynamical process[13].

The work described here is an extension to that of Steels. We
propose an adaptive algorithm which plans paths on different
levels of resolution and implement this algorithm in parallel on
a SIMD machine, the AMT DAP510, to give fast execution
time. Section II introduces a cellular representation of the
environment. Section III describes a parallel algorithm for path
planning. In section IV, we give an adaptive path planning
method which uses multiresolution representation of the map.
Finally in section V, we discuss the implementation of the
algorithm and give some experimental results.

In this paper, we focus on two-dimensional path planning
and assume a robot with a symmetric cross-section. Work is
going on to generalising the approach to the asymmetric case.

II. Space Representation

The algorithm presented here tries to formulate the path
planning system as a cellular automaton. Given the binary
image representing the map of the environment as well as the
robot itself, we divide the map into regular square grids. Each
grid represents either a free space area or an obstacle area.
Therefore, the map is transformed into a binary array. Instead
of converting the array into a graph, as in [10], we define

383 BMVC 1990 doi:10.5244/C.4.68

strengths on each grid and then spread the strengths in the
whole area according to some predefined rules. In the next two
subsections, we shall first give a definition of cellular automata
and then define strengths on the grids.

A. Cellular Automata

Cellular Automata are mathematical models of physical sys-
tems in which space and time are discrete. They are generally
used as a tool for investigation of self-organisation and nonlin-
ear dynamical systems[14][16]. In its simplest form a cellular
automaton consists of a line of sites, with each site initially
having a value. It evolves in discrete time steps. At each time
step, the value of each site is updated according to a definite
rule. The new value on each site is specified in terms of the
values of its neighbours. One simple example of a cellular
automaton rule is

where a ^ is the value of site i at time step t.

In this paper, we use a two-dimensional cellular automa-
ton which involves rules based on values of the four neigh-
bourhoods of each site. An example of a two-dimensional
cellular automaton rule is

Since the rule is applied to each site simultaneously at
each time step, it makes a good model for parallel comput-
ers.

B. Strength on the Grids

Returning to the environment map, we create a strength space
upon the map. Each grid in the map has four strengths in the
strength space. They are the strengths to move to the south,

north, west, and east(Figure 1).

Figure 1. The binary map and strengths on a grid

We can use five bits for each grid to denote its state. The first
four bits represent the strengths in the four directions and the
fifth indicates whether the grid is in a free area or in a blocked
area. For example, if 3jj= 10101, it means that the grid ajj has
strength 1 in south and west, and strength 0 in north and east,
and it is a free point. We shall use ajj (N), a^ (S), aj; (E),
and a;: (W) to denote the first four bits of a- •, and use a- • (Free)

to denote the fifth bit.

That a grid has a strength in the north means if the robot were
at the location of the grid, it may move one step to the north, and
similarly for the strengths in the south, west and east. We define
the fifth strength as invariant, i.e.

(t+1) (F r e e) = a . (t) (F r e e) > for ^ j t

III. Spreading the Strengths

In this section, we describe how to search in parallel in the
strength space to find a path. Suppose we have a robot which
has a symmetric cross-section with a radius r in terms of the
number of grids. In order to make the search easy, we first
shrink the robot to a point by growing the obstacles by r grids.
The general strategy is that we first assign strengths to the
immediate four neighbourhood grids of the goal location, and
then diffuse these strengths in parallel in the four directions
according to some rules. Initially, the four neighbourhood
grids are each assigned a strength which points to the goal grid,
as shown in Figure 2(a). The diffusion rules are specified in the
following formula:

jW(

v

(W)>v a^CEree) (1)

(2)

^ (F r e e) (3)

j (t)
j(

t>(ai+lj(t)(S) v ai+lj(
t>(N)>v a (4)

Rule (1) - (4) specify how to compute the strengths on an
arbitrary grid in one step of the iteration. Rule(l) indicates that
the north strength value on the next step depends on its present
value as well as the east and west strength value of its north
neighbourhood(V and ' A ' represent logical 'or' and 'and'
respectively). It is necessary to consider the east and west
strength when the north strength is diffused because otherwise
the flow of strengths would not be able to avoid the obstacles.
Note that grids in a blocked area cannot acquire any strength in
any direction. Thus rule(l) implies that for any free grid a-at
a certain step of iteration, it acquires a north strength if (a) its
present north strength value is 1, or (b) its north neighbourhood
grid has a north strength, or (c) its north neighbourhood grid has
an east or a west strength. The implications of rule (2) through
(4) should be apparent from the above explanation.

The diffusion process terminates when the starting grid
acquires a strength. Then the robot makes an one-step move

384

G

r
r
r

J

(a) (b)

Figure 2. (a) The initial strength space (b) The configuration of the strength space after two steps of diffusion

according to the strength value on its location grid. If the grid
has strengths in more than one direction, a random choice is
made. Figure2(b) shows the configuration of the strength space
after two steps of diffusion. To make the robot move further
steps towards the goal, the strength space is cleared and repeats
the same process as described above. Figure 3 shows a path
found by the algorithm.

IV. Adaptive Path Planning

When discretising the space into regular cells, we always face
the problem of resolution, i.e. how big a cell should be. The
increase of resolution can be very costly in terms of computa-
tion. However, using a coarse resolution may result in the
report of a longer path, or even worse, may result in failure
report a path when one actually exists. Figure 4 illustrates this
situation.

Our adaptive algorithm makes use of a multiresolution rep-
resentation of the map. First, we apply the diffusion algorithm
to a relatively coarse resolution map. If a path is found, the

Figure 3. A path found by the algorithm

(a)

\

\ 1

V.
(b)

Figure 4. (a) A blocked path in a coarse resolution (b) An open path in a finer resolution

385

algorithm terminates and reports the path. If not, there are two
possibilities; either there is actually no path, or there is a path
in a finer resolution. Instead of going on to work in a finer
resolution immediately, we can decide whether it is possible to
find a path in a finer resolution by working on the present
resolution. This is achieved by growing the obstacles by r-l(r
is the radius of the robot cross-section measuring by the
number of grids), and then apply the algorithm again. If a path
is found, that means it is possible to find a path in a finer
resolution and so we move on to work in a finer resolution. On
the other hand, if no path is reported, wecome to the conclusion
that there is really no path. To see this clearly, we need only to
note that by growing the obstacles by r-1, we get rid of those
cells which are partially occupied by the obstacles but are
represented as blocked cells due to the relatively lower resolu-
tion level. The same process is repeated at each resolution
level. Note that it is worth checking if a path is possible at the
next resolution by repeating the algorithm as above since the
time to do the coarser resolution is only a small friction of the
time to do the finer one.

The above exposition is outlined in Figure 5 where n is
the resolution level.

Procedure Adaptive_Path_Planning(Map, n,r)

while n > 0 do begin
Map <— Grow(Map, r);
Path <- Diffusion(Map);
if Path* Nil then

Output(Path); Return;
else begin

Map <— Grow(Map, r-1);
Path <- Diffusion(Map);
if Path* Nil then

n <— n-1
else

report no path
end

end

Figure 5. Adaptive Path Planning Algorithm

V. Implementation and Experimental Results

The algorithm has been implemented on AMT DAP 510 which
is a SIMD machine and which is an ideal structure for imple-
menting cellular automata. The AMT DAP 510 has a 32x32
array of processors each connected to its four nearest
neighbours(north, south, east, and west) with each processor
having its own memory(Figure 6)

The program is written in DAP Fortran which exploits the
bit serial nature of the individual processors to give fast
execution time for the binary representations. Many computa-
tions are conveniently expressed with the built-in function
'shift', which allows all processors simultaneously get access
to their four neighbours. For example, growing the obstacles by
r simply means shifting r times in four directions.

Figure 6. The structure of the DAP

When working on a map with a resolution of 32x32, each
grid of the map is directly mapped onto the corresponding
processor. When working on resolutions which are greater than
32x32, the map is represented by a few 32x32 matrices.
Parallel instructions are applied on single matrix, while be-
tween matrices, instructions have to be executed repeatedly.

Figure 7 shows a 'worst case' example of path found only at
the finest of the three resolutions. Table 1 presents the timing
results for the running of the algorithm in three resolutions for
the problem shown in Figure 3.

Table 1. Timing summary of the experiment(second)

Resolution

32x32
64x64
128x128

Data conversion

0.0004
0.0031
0.0179

VI. Conclusions

Diffusion

0.0110
3.6276

42.5864

Total

0.0116
3.6321

42.6093

The purpose of this paper has been to demonstrate the utility of
the analogical representation of the environment for an in-
stance of the path planning problem. The representation scheme
is simple because it is directly transformed from the input
image data and makes no use of explicit geometrical features
of the environment. This leads to a parallel algorithm based on
a SIMD structure. The algorithm is modelled by a cellular
automaton which clearly specifies the inter-processor commu-
nications. The algorithm is adaptive so timings vary from
problem to problem but typical times are between 0.01 - 46
seconds in a 3 resolution level version. The algorithm has
applications not only to mobile robot navigation but also to
surveillance problems involving motion analysis where some
element of fast prediction of paths is required.

386

(a) (b)

(c) (d)

Figure 7. (a) The original map (b) Blocked in resolution 1 (c) Blocked in resolution 2
(d) Found a path in resolution 3

387

References

[I] Brooks, R.A., Solving the find-path problem by good
representation of free space, IEEE Trans. Syst. Man Cybern.
13(2) pp. 190-197(1983).

[2] Brooks, R.A. and Lozano-Perez,T., A subdivision
algorithm in the configuration space for find path with
rotation, IEEE Trans. Syst. Man Cybern. 15(2) pp. 224-233
(1985).

[3] Canny, J.F., The complexity of robot motion planning,
Ph.D. Thesis, Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA (1987).

[4] Canny, J.F., On detecting collisions between polyhedra,
Proceedings of ECAI84, pp533-542(1984)

[5] Canny, J.F., Collision detection for moving polyhedra,
IEEE Trans. PAMI-8, pp200-209 (1986).

[6] Kambhampati, S. and Davis,L.S., Multiresolution path
planning for mobile robots, IEEE J. Robotics and Automa-
tion, vol. RA-2, no.3, (1986)

[7] Khatib, O., Real time obstacle avoidance for manipula-
tors and mobile robots, International Journal of Robotics
Research, 5(1), pp.90-98,(Spring 1986)

[8] Lozano-Perez, T. and Wesley, M.A., An algorithm for
planning collision-free paths among polyhedral obstacles,
Comm. ACM 22 (10) pp560-570 (1979).

[9] Lozano-Perez, T., Spatial planning: A configuration space
approach, IEEE Trans. Comp. vol. C-32, no.2, pp. 108-120
(1983).

[10] Thorpe, C. E., FIDO: Vision and navigation for a robot
rover, CMU-CS-84-168, (1984)

[II] Schwartz, J.T. and Sharir, M., On the piano movers
problem II. General techniques for computing topological
properties of real algebraic manifolds, Courant Institute of
Mathematics, Rept. No. 41, New York(1982).

[12] Steels, L., Steps towards common sense, VUB AI Lab.
Memo 88-3, Brussels (1988).

[13] Steels, L., Artificial Intelligence and complex dynamics,
VUB AI Lab. Memo. 88-2, Brussels (1988a).

[14] Toffoli, T.,and Margolus.N., Cellular Automata Ma-
chines. A new environment for modelling. MIT Press, Cam-
bridge MA (1987)

[15] Welzl, E., Constructing the visibility graph for n line
segments in 0(nfyime, Inf. Process. Lett. 20pp. 167-171 (1985).

[16] Walfram, S., Statistical mechanics of cellular automata,
Review of Modern Physics, vol. 55, no.3 pp. 601-644.(1983)

[17] Witkowski, CM., A parallel processor algorithm for robot
route planning, Proceedings of IJCAI83, pp827-829, (1983)

388

