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This paper describes two preliminary experiments con-
cerned with the construction of a robot head. The
initial design and research is aimed at producing a
system with two cameras and two microphones on
a system capable of operating with the same degrees
of freedom and reflex times as its biological counter-
part. Whilst the primary goal of the project is de-
velop an anthropomorphic system with the sensory re-
flex capabilities of a human head, the system will
also contain some non-anthropomorphic components.
The most obvious of the non-anthropomorphic com-
ponents is a spatially and temporally programmable
light source. Some preliminary results are presented.

use this information to direct autonomous behaviour
(Brooks, 1989) but these reflexes have not been cou-
pled with vision systems for integrated tracking or gaze
control.

This paper outlines several of the ideas behind a project
to build a robot head and provides some preliminary
results for one of the reflex systems as well as giving
some details of its integrated texture projection system.
This novel projection system allows the head to project
illumination onto a scene with computer control in both
temporal and spatial (textural) domains.

Whilst focus and aperture have been readily automated
in devices such as the camcorder, the automation of ver-
gence, tracking and the basic orientation reflexes are not
well advanced. Such built-in reflexes are critical com-
ponents of any sophisticated vision system. Without
a vergence or slow tracking system, stereo and motion
solutions are limited to a narrow operational cange in-
volving the limits of data fusion. Gaze control allows
the system to direct attention, for example, to get a
particular view which helps reconcile some ambiguity
in an otherwise static system. Gaze may also be used
to provide closed-loop tracking which may help simplify
the computation of intrinsic image information.

There have been few attempts to build vision systems
that include cameras which can be motor driven on
some of their degrees of freedom. Probably the best
two examples are those at Rochester [7] and at Mu-
nich [6]. Each of these two systems are strictly limited
in terms of their functionality. Early versions of the
Rochester system used a vergence control system driv-
ing the cameras in opposite directions so as to maintain
coincidence between two images whilst the Munich sys-
tem allows XY gaze control of a single camera directed
at a target feature.

The integration of other sensory modalities into orien-
tation reflexes for directing, for example, a vision sys-
tem has also received little attention. Systems have
been built which attempt to localise sound sources and

VERGENCE CONTROL
Vergence control is necessary to bring images captured
from two locations in space into approximate correspon-
dence. This may be used directly to provide informa-
tion about range as well as providing a stereo process
with favourable starting conditions. Stereo matching
algorithms contain fusional limits for the maximum al-
lowable disparity; the vergence mechanism simply at-
tempts to maximise the amount of the image pair which
can then be fused. Rather than provide a globally best
vergence signal from a stereo pair, vergence mechanisms
typically attempt to find correspondence between small
subsets of the images, i.e. central foveas [3].

Whilst one important requirement for the project is real
time execution of the vergence mechanism, the require-
ment for precision is not as high as for the stereo pro-
cess.

Based on the above understanding, we have developed
a vergence control algorithm which fulfills the above
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Figure 1: Software architecture of the vergence control
algorithm.

Figure 2: A natural corridor scene.

Signal Matching algorithm developed for matching in
stereo and motion computation [5]. Like MSSM, the
algorithm also produces a confidence value accompany-
ing its estimate of vergence.

mentioned requirements.

Algorithm

The algorithm design is strongly constrained by the re-
quirement for fast execution time. To achieve this, a
pyramid image architecture has been adopted. Figure 1
provides a summary of the software architecture for the
vergence control algorithm.

First a pyramid is built from the input stereogram.
Then, the image pair is blurred by a small sigma Gaus-
sian function at each pyramid level. This filtering is
necessary in order to achieve left-right matches at each
level. Next, a small fixed size window is applied to the
left and right images, again at each level. The window
is able to move to the left or to the right. Correlation is
now carried out between the image pair masked by these
windows as a search operation. The search starts from
the image pair at the top of the pyramid using a zero
offset of the windows. By moving the windows either
to the left or to the right, the best match is looked for
and obtained which then serves as the starting offset of
the windows at the next lower level of the pyramid and
another round of search begins. This process contin-
ues until the best match has been found at the bottom
of the pyramid. The window offset which leads to this
best match is used for vergence control.

The progressive focusing of the solution through a series
of octave separated levels is effectively a coarse-to-fine
fovea. The algorithm is based on the Multiple Scale

Performance

The algorithm is programmed in C and runs on a sun
SPARCstation 1. For a 128 x 128 8 bits per pixel image
pair, the typical time consumed by different part of the
program is 20-30ms to read in the image pair, 20-30ms
to build the pyramid, 30-40ms for matching and search-
ing and 10-20ms for the other miscellaneous operations.
The total time taken to produce a vergence estimate is
80-120ms. The algorithm is of pixel accuracy.

The algorithm has been tried out on a natural corridor
scene and a random-dot image. From each of these
two images, two, partially overlapping sub-images were
extracted with known amounts of offset. A third test
was performed where various amounts of Gaussian noise
was added to the corridor stereogram.

Figure 2 is a natural corridor scene which served as a
base image from which stereograms of different dispar-
ity were derived.

Figure 3 is a stereogram derived from the natural cor-
ridor image.

Figure 4 is the same stereogram as above but with
added Gaussian random noise.

Figure 5 a is a random-dot image; b is a stereogram
derived from a.

Figure 6 shows that with a natural image pair, the algo-
rithm may properly function in the symmetric interval
from -51 to 51 pixels. With added noise, the confidence
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Figure 3: A stereogram derived from the natural corri-
dor scene image.

Figure 4: A noise corrupted natural corridor scene
stereogram.
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Figure 6: Algorithm performance - see text for details.

value fell according to the amount of noise present. The
estimate of error was 2 pixels for a disparity of 51 pixels
and noise sigma of 50.

Figure 5: a random-dot image,
ogram derived from a.

b random-dot stere-

INTEGRATED DYNAMIC PRO-
JECTION
All vision systems that are intended to sense objects
that do not intrinsically radiate their own light energy
require some form of illumination source by which to
sense such objects. Indeed, the majority of vision instal-
lations utilise some form of artificial illumination when
operating indoors. Under such circumstances we are
presented with the opportunity of utilising a controlled
illumination source that may be structured to enhance
the operation of any vision algorithms executed by the
robot head.
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Accordingly, a novel feature of the robot head design is
the incorporation of a programmable projection based
illumination source. This source will illuminate the
scene using a steerable projector that tracks the mo-
tion of the stereo cameras to ensure that the projector
field of illumination remains congruent with the fields
of view of the stereo cameras x.

Integration of Active and Passive Sensing

Active vision techniques typically employ some form of
structured illumination (e.g. light striping, moire fring-
ing etc. [2]) and rely upon interpreting contrast differ-
ences provided by this illumination to compute surface
range estimates. By definition, active techniques em-
ploy interpretation algorithms that are intimately cou-
pled to the structure of the adopted lighting source and
are accordingly ad hoc in nature, i.e. incapable of op-
erating in a purely passive mode and thereby utilising
unstructured lighting.

We intend to effect the integration of active and pas-
sive sensing techniques by providing controlled illumi-
nation to bear on specific interpretation problems that
give rise to interpretation ambiguity, e.g. when the illu-
mination configuration details are unknown and shad-
ing analysis is attempted. Previous attempts to com-
bine active and passive sensing modalities have been
reported [10], however these simply combine the results
of passive interpretation with structured illumination
based ranging. Our approach has been to utilise spe-
cific modes of illumination suited to particular passive
interpretation tasks. When shading analysis is being
performed, a simple illumination field of known char-
acteristic can be provided. When stereo interpretation
is being performed, the projector can be switched to
illuminate the scene with a Gaussian texture field. We
have previously reported [8] that the performance of
the scale space stereo algorithms can be dramatically
improved by the projection of textured light onto the
scene. Hence a projection mode would be selected ac-
cording to the interpretation task at hand. Indeed in-
terpretation algorithms that perform the tasks of stereo
and shape-from-shading exhibit complementary perfor-
mance characteristics depending upon the density or
nature of intrinsic surface texture patterns on the sur-
faced of objects contained in the scene.

Several advantages can be gained by adopting this ap-
proach to integrating active and passive vision tech-
niques. Controlled programable illumination makes
possible the investigation, development and utilisation
of passive interpretation algorithms under ideal sens-
ing conditions. From the perspective of vision research
this is highly expedient as individual sensing mecha-

1A broad analogy might be the lamp on a miner's helmet!

nisms become increasingly better understood in isola-
tion while their combination remains difficult. From a
systems perspective, the robot head will be capable of
operating, albeit with degraded performance, in a pas-
sive mode using unstructured lighting, e.g. outdoors
or when subject to extraneous illumination fields, and
hence will be inherently robust in operation.

In short, the system will be based passive sensing tech-
niques but can also be enhanced in operation by the use
of controlled active illumination. This paradigm com-
pliments the major project goal of utilising a dynamic
approach to visual interpretation, in the sense of em-
ploying sensor platform mobility or motion to resolve
interpretation ambiguity [1].

Enhancement of Stereo Using Textured
Light

As stated above, we have undertaken a number of ex-
periments that investigate enhancing a passive scale-
space stereo algorithm, MSSM [5] by illuminating the
imaged scene with a Gaussian noise field, i.e. textured
light.

There are four main problems which can lead to match
failures in the stereo matching process [4]:

• Photometric variations at a point viewed from two
angles.

• Lack of texture in a region.

• Presence of repetitive texture patterns.

• Occlusion between camera views of some points in
stereo pair.

The problem of photometric variations is overcome in
the MSSM algorithm by utilising a covariance measure
to search for disparity estimates that does not rely upon
correlating absolute grey-level intensities. Random tex-
ture projection both addresses the problem of match
failure where the intrinsic texture is sparse and counter-
acts the matching ambiguity caused by repetitive tex-
ture patterns.

Projected random texture gives rise to an extended
spectral distribution that provides matching energy at
all scales in scale space. The low frequency limit of the
texture spectral distribution sets the maximum scale
size and hence disparity that can be matched unam-
biguously. The high frequency limit of the spectral dis-
tribution sets the smallest scale size and hence the final
degree of scale space match refinement. Ideally the tex-
ture spectrum should be constant or "white" to achieve
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Figure 7: Left image captured using random texture
projection. Right image captured using white light as
normal.

Figure 8: 2DFT power spectrum of images from figure
7 respectively.

the optimum autocorrelation characteristics. However,
in practice random texture projection can provide "ran-
dom dot stereograms" of the imaged scene and thereby
counter both lack of texture and the effects of repetitive
intrinsic surface markings.

We have investigated in detail [9] the optimum spec-
tral characteristics of the projected textured field (for
our current camera/projection apparatus) in terms of
the texture size and aspect ratio that yields the great-
est horizontally biased spectral energy envelope in the
sensed image. Figure 7 shows the left hand images of
stereo pairs with and without texture projection respec-
tively. In this example the texture was provided by
a simple overhead projector containing a laser printed
texture transparency. Figure 8 shows the increased
spectral energy due to texture projection, comparing
the DFT power spectrum of these images. Figure 9
shows wire-frame reconstructions of the range image
surface obtained by matching the texture projected
stereo pair using MSSM.

Briefly, the final cause of match failure listed, occlu-

Figure 9: Wire-frame reconstructions of range informa-
tion recovered from textured projected stereo pair (left
image of figure 7.)
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sions, can be detected when utilising active texture pro-
jection as low confidence matches. We have investigated
[9] detecting occlusions using both this effect and the
shape of the correlation search graph itself.

Discussion

This paper has demonstrated two applications of Mul-
tiple Scale Signal Matching as part of a single project.
The work has helped outline a framework for the devel-
opment of an anthropomorphic head capable of a num-
ber of integrated reflex functions. Because it is recog-
nised that there will be occasions where the head is un-
able to provide good measures of its environment, the
system is enhanced with the capability for active illumi-
nation designed to help facilitate its otherwise passive
systems.

It is intended to extend the use of the signal match-
ing technology to provide fast matching between micro-
phone signals from the robot head. The purpose here
will be to provide orientation information so enabling
sounds to provide a direction reflex for vision.
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