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The problem of grouping the gray value variations at
the border of complex structured surfaces in outdoor
scenes is considered in order to get a simple symbolic
representation of such boundaries. Our approach is
based on a combination of histogram und minimal
spanning tree (a graph-theoretical method) evalua-
tion. In this way the direction and magnitude of the
gray value gradient and additionally the spatial dis-
tance of contour points are considered in a common
framework. After cutting the tree at some edge joining
"inconsistent" clusters, which can be selected by com-
bining the mean and standard deviation of all tree
edges, the subtrees are symbolically described by their
principal axes of inertia. From many successfull ap-
plications, the examples presented in this contribution
demonstrate that the largest subtree is appropriate in
order to localize, e.g., road boundaries.

The issue to be addressed in this paper relates to the
grouping of data in low-level-vision for the detection
of object boundaries in outdoor scenes. The difficulty
of this task depends mainly on the structure of the
scene, where, e.g., texture, occlusions, and poor con-
trast may disturb relevant contours.

It is generally accepted that the detection of common
properties of picture domain cues, such as, e.g., orien-
tation or contrast of contours is insensitive to prob-
lems associated with a local analysis. Numerous pa-
pers published in the last few years suggest methods
to detect texture boundaries (e.g., Vistnes 89, [1] and
Voorhees and Poggio 88 [2]) or to group fragmentary
contour elements to object boundaries (e.g. Mohan
and Nevatia 89 [3], Fan, Medioni, and Nevatia 89
[4]). However, the applications shown in many of
these papers do not refer to outdoor scenes and, addi-
tionally, most approaches seem to be very time con-
suming. One of our goals is to show that a very effi-
cient technique for boundary detection in outdoor
scenes could be implemented by combining some
relatively simple methods.

METHOD

The strategy in our approach is to look for a global
feature, namely the orientation of contour elements,
by maximum detection in a histogram of gradient di-
rections. After that, all points with directions of the
gray value gradient in a certain interval around a
significant maximum are considered as nodes of a
minimum spanning tree (MST). For the weights of
the graph edges the differences of the position and
contrast of contour points are considered. The con-
trast is given by the magnitude of the gray value gra-
dient. First experiments have yielded acceptable re-
sults even if an Euclidean distance is used in a (x,y,
gradient magnitude)-space.

The decomposition of the MST into subtrees associat-
ed with particular contour segments is certainly a
problem. It has been approached empirically by de-
fining the weight of an "inconsistent" graph edge as
a linear superposition of the mean weight of all edges
and its standard deviation. The definition of an "in-
consistent" edge is demonstrated in Fig. 1 which is
taken from Zahn 71 [5].

Fig. 1 b) shows the MST of the weighted linear graph
in a) and c) illustrates the "inconsistent" cluster-
joining edge (A, B) between clusters Ci und C2.

In a last step the nodes of a subtree are considered
physically as mass points with masses equal to the
magnitudes of the corresponding gray value gradi-
ents in the image domain where they form a cluster.
This cluster may define an object boundary. The posi-
tion of the cluster is the point of gravity and its orien-
tation is given by the principal axis of inertia.

The advantage of the MST method compared to some
other graph-theoretical methods for describing Ge-
stalt clusters has been discussed by Zahn 71 [5]. But
in his approach only the Euclidean distance in (x,y)-
space determines the weights of the MST edges. As
mentioned above the nodes of the MST in our ap-
proach have the attributes position (x, y), magnitude,
and direction of the gray value gradient which is
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Figure 1. Example of a graph in a), the MST (Mini-
mal Spanning Tree) of a) in b), and illustration of
an "inconsistent" cluster-joining edge (A, B) in c)
from Zahn 71 [5].

which is calculated according to the method describ-
ed in Korn 85 [6], Korn 88 [7]. Furthermore, the
nodes of the MST are contour elements which are the
maxima of the magnitude of the gray-value gradient
in the direction of the gradient. Strictly speaking,
these points are only candidates for contour elements
because we don't compare the result for different
Gaussian masks in a filter bank to find the best filter
parameter as proposed in Korn 88 [7].

IMPLEMENTATION AND RESULTS

Fig. 2 shows an outdoor scene which is picked up by a
CCD-camera in a moving car. In order to facilitate
autonomous drivings, the border of the road should
be detected in rather large image domains. Three of
such possible domains are marked by the white rec-
tangular frames in Fig. 2. They are refered in the fol-
lowing as window 1 (left), window 2 (middle), and
window 3 (right). Each window has a size of 150 col-
umns and 120 rows.

Figure 2. Image of an outdoor scene. In window 1, 2,
and 3 borders of the road should be detected.

The first processing stage is the convolution with the
normalized gradient of Gaussians which is done in

real time up to a 8 x 8 convolution kernel in our
image processing system VISTA (Visual Interpre-
tation System for Technical Applications, Paul et al.
88 [8]). The output of VISTA is based on a procedure
which approximates the gray value gradient n with
components n^ and n2 [7]

n = (n, = - oV2r?V (G*f).

Here G = G(x,y,o) is the 2-dimensional Gaussian
with standard deviation o, f = f (x,y) the image func-
tion, and * the symbol for convolution. With the stan-
dard deviation o = 1.0 of the Gaussian one gets a
good compromise between noise reduction and suffi-
ciently high resolution. The output of VISTA consists
of four images: direction and magnitude both of the
gray value gradient and of its maxima in gradient
direction. The latter are called contour points in the
subsequent discussion.

The next step is to generate the histogram of gradi-
ent directions for all contour points in a window. The
VISTA system delivers in real-time an estimate of
the gradient direction covering the full 360 degree
angular range quantized into 180 intervals of 2 de-
grees each. The histogram of these data for all con-
tour points in a window is generally very noisy. It
must be smoothed by a suitable low pass filter which
is in our approach a 1-dimensional Gaussian. Such a
smoothed histogram for the directions of the 2610
contour points in window 1 is shown in Fig. 3. The
standard deviation of the 1-dimensional Gaussian
was o — 4 degrees. The maxima are automatically
detected. Gradient direction 66 degree has the larg-
est amplitude and the opposite direction 242 degree
yields the second significant maximum. Here the fol-
lowing angle convention is used: the gradient shows
always from the darker to the brighter part at inten-
sity changes, the direction 0 degree = 360 degree is
the horizontal x-axis, and the angles are increasing
clockwise.

Figure 3. Smoothed histogram of the direction of the
gray value gradient for all CP (Contour Points) in
window 1 (see Fig. 4). Significant maxima are found
at 66 and 242 deg.
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In Fig. 4 all contour points of Fig. 2 are depicted. Pre-
processing with the normalized gradient of Gaussian
was performed with standard deviation a = 1.0. All
maxima with gradient magnitude larger than 10 are
shown. If all contour points in window 1 are consid-
ered as mass points where each mass is given by the
gradient magnitude, then the inner "rectangle of in-
ertia" can be calculated by a method well known in
physics. The axes of this rectangle are derived from
the ellipse of inertia by taking the two principal axis
after adjusting the larger axis approximately to the
size of the point cluster leaving the ratio of the axes
constant. In this way one gets easily robust param-
eters for the extent and the orientation of the cluster.
The points of gravity of the rectangle and of the
considered contour points coincide. The angle 8 of the
larger axis with the (horizontal) x-axis is measured
clockwise following our conventions for the gradient
direction. This yields 184 degrees for the inner rec-
tangle shown within the window 1 of Fig.4. In order
to detect the direction of the road border some fur-
ther steps are apparently necessary.

Figure 4. The gradient magnitude of all CP of Fig. 2
above the threshold 10 for a gradient operator with a
= 1.0. In window 1 the RI (rectangle of Inertia) of
these CP (see text) is shown.

In Fig. 5 the RI (rectangle of inertia) is calculated for
all contour points in window 1 with gradient direc-
tions in a ± 16 degree interval around the histogram
maximum at 66 degree. The size of the interval
around the histogram maximum is not a critical pa-
rameter. It determines only the number of contour
points considered for the construction of the MST.
For our purposes the width at half maximum ampli-
tude of the most prominent histogram peak yields a
suitable size. The direction of the larger axis is 8 =
168 degree. As expected one gets a better approxima-
tion of the orientation of the road border. All points
which are considered for the computation of a RI are
depicted in the corresponding windows of Figs. 4, 5,
7, 9, 10. The contour points in the upper left part of
the window shown in Fig. 5 are responsible for the
shift of the center of the RI in this direction. The ra-
tio 4.7 : 1 of the axes of the RI in Fig. 5 also indicates

Figure 5. Approximation of the left road side by the
RI which is calculated out of all CP in window 1
with gradient directions 66+16 deg. (see Fig. 3).

a still rather large scatter of contour point character-
istics contributing to the maximum in the direction
histogram of Fig. 3. In order to select a subsample
from this maximum such that the selected contour
points belong to a cluster of straight line segments,
additional criteria have to be considered.

For this purpose the distance of contour points with
similar gradient directions and their difference of
gradient magnitudes have to be taken into account.
Among a lot of cluster analysis methods the MST me-
thod looks most promising to get some results compa-
rable with perceptual grouping (see e.g. Zahn 71 [5]).
The MST clustering approach is known to emphasize
chain like structures as against e.g., sphere-like
structures. For the 392 contour points with gradient
directions 6 6 + 1 6 degrees a MST has been con-
structed. For our examples the weight w of the tree
edges is given by

w = V (xi - xj)2 + (y i - yj)2 + (gi - gj)2'

where xj, xj, y;, yj are the cartesian coordinates and
gi, gj the gradient magnitudes of two contour points.
The resulting MST has a mean edge weight m = 4.2
with the standard deviation sd = ± 5.2. Cutting at
an "inconsistent" cluster joining-edge (see Fig. 1)
whose weight is defined by c = m + sd = 9.4 yields
30 subtrees. The position of the 166 nodes of the larg-
est subtree are shown as bright structure along the
road in Fig. 6. The corresponding RI is depicted in
Fig. 7. The long axis with 8 = 160 degree approxi-
mates very closely the road border. The ratio of the
axes of inertia yielding a value 79, clearly indicates a
line structure. All contour points except those on the
road border have been eliminated by this approach.

The same procedure has been applied to window 3.
The MST has been constructed from 494 contour
points with gradient directions ± 1 6 degrees around
138 degrees which was the significant histogram
maximum.The mean edge weight of the MST was m
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Figure 6. The bright structure along the left road side
is the representation in the image domain of all nodes
of the largest MST subtree of window 1 (see text).

Figure 8. The bright structure along the right road
side is the representation in the image domain of all
nodes of the largest subtree of window 3.

Figure 7. The RI in window 1 corresponding to the
nodes in Fig. 6 is a close approximation of the road
side.

- 4.2 with sd = ± 3.5. Cutting at c = 7.7 yields 31
subtrees. The 249 nodes of the largest subtree are de-
picted in window 3 in Fig. 8 as bright structures. The
RI with an axis ratio 81 and an orientation 8 = 48
degree is a good approximation of the road border in
window 3. More difficult is the representation of the
dividing strips which are included in window 2 in
Fig. 2. The individual markings can only be de-
scribed by a single subtree if the cutting distance for
an "inconsistent edge" is chosen much larger than
the default values described above. In addition, out of
the 1683 contour points in window 2 the 323 points in
the intervals 24 ± 16 degrees and 210 ± 16 degrees
around the two significant maxima at 24 and 210 de-
gree of the histogram of gradient directions are se-
lected for the construction of the MST. The tree has a
mean edge weight 6.2 with a standard deviation 4.7.
Applying a very large cutting distance, e.g. 30, one
gets only two subtrees. The larger one has 287 nodes.
Its corresponding RI with 8 = 119 degree describes
the location and direction of the dividing strips rath-
er good as can be seen in Fig. 10.

Figure 9. The RI in window 3 corresponding to the
nodes in Fig. 8 is a close approximation of the right
road side.

Figure 10. The RI in window 2 corresponds to a
MST subtree which contains 90 % of the CP with
gradient directions 24 ±16 and 210 i 16deg.

DISCUSSION

In addition to the efficacy of our approach for the
symbolic representation of rather complex structures
in images, we think that the simplicity is another
important aspect. We have already realized a hard-
ware module in order to compute gray value gradi-
ents, contour points and their histograms. Using po-
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sition and gradient magnitude of contour points, the
construction of the MST is remarkably simple.

Besides these advantages the perceptual distance,
i.e. the MST edge weightings of contour points whose
direction can be selected arbitrarily out of one or
more maxima of the corresponding histogram, can be
controlled by an appropriate weighting function. The
function proposed in this paper is only one of a vari-
ety of possible functions which should be adapted to
some suitable perceptual model. The method is not
restricted to the evaluation of straight lines but as
well to grouping of chain like structures which may
be curves. Dependent on the applications only the in-
terpretation of the histogram of gradient directions
must be adapted. These aspects are to our opinion
important advantages compared with widespread
clustering methods in image processing as for exam-
ple the Hough transformation.
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