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A variation of the Hough Transform that is aimed at detect-
ing digital lines has been recently suggested. Other Hough
algorithms are intended to detect straight lines in the ana-
log pre-image. These approaches arc analyzed and com-
pared in terms of the relation between the achievable reso-
lution and the required number of accumulators, using a
definition of resolution that is based on the Geometric Pro-
bability measure of straight lines. It is shown that the "ana-
log" approach is greatly superior in high resolution appli-
cations, where a "digital" Hough Transform would gen-
erally require an infeasibly large number of accumulators.

The Hough Transform [2,4] is a well known technique for
recognizing predefined features in edge maps. In this paper,
the Hough Transform for detecting straight lines is con-
sidered.

Most Hough algorithms consist of an incrementation stage,
in which each edge point "votes" for the parameter-pairs of
all possible straight lines on which it can lie, and an exhaus-
tive search for peaks. These correspond to large collinear
sets of edge-points.

Originally, the slope-intercept (m,b) parametrization of
straight lines had been employed in the Hough Transform.
It has the advantage that an edge point corresponds to a
straight line in the parameter space, thus voting is simple.
Its drawback is that the parameter space is unbounded,
implying some theoretical and practical difficulties. With
normal (p,0) parametrization of straight lines, as suggested
by [2], an edge point corresponds to a sinusoid in the
parameter space, thus voting is somewhat more complex.
The normal parametrization has the advantage that a
bounded image leads to a bounded parameter space. Other
straight-line parametrizations have also been suggested, see
[4,11,17].

In most implementations of the Hough algorithm the param-
eter space is represented by a rectangular accumulator
array, such that each accumulator corresponds to a rec-
tangular, constant size domain in the parameter space. The
quantization of the parameter space greatly influences the
resolution and detection capabilities of the algorithm, as
well as the computational and storage requirements; see
[6,16].

Errors in the location of the edge points impair the

performance of conventional Hough algorithms. Such errors
are usually due to the effects of image noise and distortion,
including image digitization, on the output of the edge
detector. Modern forms of the Hough Transform, e.g.
[6,10,15], provide some compensation for location errors in
the data, thus improving the performance of the algorithm.
These variants do not provide special treatment for location
errors which are due to image digitization; this is justified
by the ability of modern edge detection schemes to offer
sub-pixel accuracy when the levels of other sources of
image noise are low. In this paper, [6,10,15] and related
versions arc referred to as "Analog Hough Transforms",
since they are intended to detect straight lines in the analog
"pre-image".

An interesting form of the Hough Transform has recently
been described in [1]. It is specifically aimed at detecting
digital straight lines [3], and is thus referred to here as the
"Digital Hough Transform". This version of the Hough
Transform employs the slope-intercept paramctrization, and
a non-uniform parameter space quantization scheme that, in
principle, assigns an accumulator to each of the triangular
or quadrilateral domains in the (m ,b) space that correspond
to distinct digital lines. Such domains have been originally
described and characterized in [3]. It is claimed in [1] that
the Digital Hough Transform is a computationally attractive
alternative to usual high resolution implementations of the
Hough Transform. The purpose of this paper is to compare
the analog and digital approaches to the Hough Transform,
and in particular to compare the resolution that a certain
number of accumulators can "buy".

DIGITAL HOUGH TRANSFORM

A fundamental observation underlying the digital approach
to the Hough Transform is \haxAD (N), the number of possi-
ble distinct digital straight lines in an NxN digital binary
image, is finite. Recently, Lindenbaum, Koplowitz and
Bruckstein [8] have shown that

AD (N) = ~N4 + O (N3log N).
7T

(1)

Dorst and Smculdcrs [3] have shown that each digital line
corresponds to an (infinite) set of "analog" straight lines
that can be represented by a distinct domain in the (m,b)
parameter space. A digital Hough algorithm to detect digital
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straight lines can, in principle, be constructed by assigning
an accumulator to each of the AD(N) domains. Clever data
structures [1] can reduce this number if the number of edge
pixels in the image is small.

The Digital Hough Transform is at its best when the image
digitization process is the dominant source of location
errors in the data points, i.e. when the image contains true
digital straight lines. It may be observed that if the task is to
merely verify that a digital arc is a digital straight line, then
alternative, extremely efficient O(N) algorithms [7,13] arc
available.

Unlike most conventional Hough algorithms, the "resolu-
tion" of the Digital Hough Transform given an NxN image
cannot be set or modified by design, since the number of
accumulators is fixed, equal to the number of possible digi-
tal straight lines in the digital image. (Decimation of the
digital image would, however, allow to reduce the number
of accumulators and degrade resolution.)

To enable comparison with other Hough variants, a mean-
ingful measure of resolution must be devised. For the Digi-
tal Hough Transform a reasonable approach seems to be the
quantification of the "residual ambiguity" in the position of
a straight line once the digital straight line to which it
relates has been identified. This requires to, somehow,
measure the infinite set of straight lines that belong to the
corresponding domain in the (m Jb) parameter space.

In the Digital Hough Transform the quantization of the
(m,b) parameter space is nonuniform in the sense that
accumulators are assigned to domains of different sizes and
shapes. One might be tempted to determine an "average"
domain and perhaps regard its area as a measure of the resi-
dual ambiguity. This is, however, unacceptable since
domains of equal area in different locations in the (m ,b)
place cannot be meaningfully associated with equal residual
ambiguities. Furthermore, lines in real images are usually
not drawn from a uniform probability source, so there is lit-
tle engineering justification in using the average as a figure
of merit.

To avoid averaging, one might want to focus on the particu-
lar digital straight line that leads to the worst-case residual
ambiguity. But the worst cases relate to straight lines that
set very few pixels in the image, such as lines that traverse
the image near its corners. The ambiguity in the location of
such lines is not very interesting, so a better approach seems
to be to measure the worst-case residual ambiguity among
lines that intersect opposite sides of the image and set all
pixels in between.

A meaningful measure of (an infinite set of) straight lines
should be invariant to translation and rotation of the coordi-
nate system. A unique measure satisfying these require-
ments is known in the field of Geometric Probability [12].
Two important conclusions, informally rephrased, are that
patches of equal area in a (p,0) normal parameter space (but
not in the (m ,b) space!) correspond to (infinite) sets of lines

of equal measure, and that the measure of straight lines that
traverse a convex region is equal to the perimeter of the
region.

By the Geometric Probability measure of straight lines, the
worst-case residual ambiguity in the location of lines that
intersect opposite sides of the image and set all pixels in
between is clearly associated with digital lines that are
parallel to one of the axes of the grid, as shown in Figure 1.
The computation of the ambiguity is described with refer-
ence to Figure 2.
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Figure 1. The digital line that induces worst-case residual
ambiguity among lines that intersect opposite sides of the
image and set all pixels in between.

Figure 2. The geometric structures used for computing the
measure of straight lines that intersect both the segment AB
and the segment CD.

Let Lx denote the set of straight lines that intersect a
geometric feature X, and let Mx =M(LX) denote the meas-
ure of that set. The worst-case residual ambiguity is defined
as the measure of the set of lines that intersect both seg-
ments AB and CD:

Clearly, nLCD ^

(2)

r\LCDO- Furthermore,

- M (L/{BO u LCDO V>)
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But LMO u LCDO - LMCD > so

= MMO (4)

The triangles ABO and CDO, and the rectangle ABCD are
convex polygons, thus the measure of the lines that traverse
each of them is simply the respective perimeter. Hence,

/jV2) _ (2/N + 2)RDHT(N) = 2(l/N +

If TV is large the following approximation holds:

(5)

(6)

(7)

with the Digital Hough Transform with respect lo the
dependence of the effective resolution on the number of
accumulators. Relevant ideas and results from [6] are
presented and extended in the rest of this section.

Consider the Duda and Hart [2] algorithm, in which detec-
tion of collinear points is substituted by the detection of
sinusoid intersections. The voting process is intended to
produce at the accumulator array a discrete approximation
of the continuous-support Hough Transform /j(p,9) defined
as follows: Let p,- > 0 and 0 < 0,- < 2rc denote the polar
coordinates of any edge point p,- e P. Then every />,- e P
generates a sinusoid pj°(0) in the (p,6) parameter plane:

= p1cos(01-e) 0e[O,Tc). (8)

It is concluded that the resolution of the Digital Hough
Transform is such that the worst-case residual ambiguity
among lines that intersect opposite sides of the image and
set all pixels in between is approximately UN2 according to
the rotation and translation invariant measure of straight
lines. The required number of accumulators is asymptoti-
cally 3JV4/TI2.

ANALOG HOUGH TRANSFORM

By specifically tailoring the Hough algorithm to detect digi-
tal straight lines, one implicitly assumes that the discretiza-
tion of the image is the dominant source for errors in the
location of edge points. Very often this is not the case; the
accuracy of modern edge detectors largely depends on the
level of image noise, and can reach sub-pixel levels when
the signal to noise ratio is high. Thus "analog" Hough algo-
rithms, capable of detecting straight lines in the analog pre-
image, are useful.

In conventional Hough Transforms, errors in the coordi-
nates of data points were altogether ignored or believed to
be compensated by the quantization of the parameter space.
The shortcomings of that approach manifest themselves in
the spreading of peaks in the parameter space and in the
appearance of false peaks. These phenomena can lead to
considerable degradation in the performance of the Hough
algorithm in terms of detection capability and effective
resolution. Thus, the simplistic assumption that the resolu-
tion of conventional Hough algorithms is directly related to
the quantization density of the parameter space fails to
account for errors in the location of edge points.

Variants of the Hough Transform that provide compensa-
tion for errors in the location of data points have been avail-
able for some time, but have usually been difficult to
analyze. Recently, Kiryati and Bruckstein [6] studied an
extended Hough Transform [15] that provides compensa-
tion for edge-point location errors, and using a signal-
theoretic analysis were finally able to show how its resolu-
tion depends on the quantization of the parameter space, i.e.
on the number of accumulators. This algorithm is thus an
"analog" Hough Transform that is convenient to compare

An indicator function is associated with each sinusoid:

Q f l p = Pi°(0)
h (P.9) = 1 0 otherwise

(9)

Summing up the indicator functions yields the continuous-
support Hough Transform:

h (p,9) is a discontinuous - hence non-bandlimitcd - func-
tion. This is not changed by the spatial-dependent transfor-
mation inherent in the voting process. It is well known that
due to aliasing effects a non-bandlimited signal cannot be
properly represented by a discrete set of samples.

This basic inadequacy in the algorithm was studied in depth
[6]; the key to the solution is the replacement of /i(p,0) by
an "almost" bandlimited function, such that "sufficient"
parameter-space sampling can be carried out. Interpolation
by an appropriate low-pass filter then allows high resolution
search for maxima in the parameter space. The smoothing
of h (p,0) must be performed before sampling, in a way that
preserves the useful properties of the algorithm in line
detection, and in a computationally feasible manner.

In particular, it has been suggested [6,15] that the indicator
function (9) be replaced by

where C(-) is an "influence function" to be discussed in the
sequel. This results with a modified continuous-support
Hough Transform

(12)

z(p,9) can be point-sampled by assigning accumulators to a
discrete set of sampling points, and evaluating (12) only at
these points.

The replacement of (9) and (10) by (11) and (12) can be
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visualized as the replacement of the sinusoids in the Duda
and Hart algorithm by sinusoidal bands whose vertical pro-
file is C(-)- If C(-) has finite support, the algorithm remains
computationally feasible (and apt for parallelization).

The introduction of the influence function C Q into the
Duda and Hart algorithm is equivalent to surrounding each
edge-point by a circularly symmetric density distribution
(which is the inverse Abel Transform of the influence func-
tion) and replacing the Duda and Hart Transform by the
Radon Transform. By choosing C(-) to be symmetric, posi-
tive, reasonably "well behaved" and of finite support
(-rm ,rm), the useful properties of the algorithm are main-
tained, and compensation for location errors (limited to rm)
is provided.

Kiryati and Bruckstein [6] have shown that if C(-) is
bandlimited to (-com,com), then the modified continuous-
support Hough Transform z(p,9) is also 2-D bandlimited,
and can be fully represented by a discrete set of samples.
The uncertainty principle of signal representation dictates,
however, that the influence function C(-) and its Fourier
Transform cannot both be of "short duration". Since imple-
mentation of the modified Hough Transform implies an
influence function C(-) of finite support, the use of support
limited influence functions that have the smallest possible
"effective bandwidth" in a certain sense has been suggested,
e.g.

k cos{wl2rm) \r\<rm
(13)

where k is a constant. With k > 0 this influence function is
a positive, symmetric and monotonically decreasing func-
tion of I r I. Furthermore, it has the smallest possible effec-
tive bandwidth (in the sense of the second order energy
moment of its Fourier Transform) among all functions that
are support limited to rm.

With a support limited influence function which is also
effectively bandlimited, z(p,8) is effectively bandlimited,
has finite support in the p direction and is periodic in the 0
direction. Thus it can be represented by a finite set of point
samples with negligible aliasing. It has been shown that due
to the bow-tie shaped band-region of z(p,9), optimal sam-
pling of z(p,9) is on an hexagonal grid, and sampling on a
rectangular grid doubles the sampling requirement, i.e. the
required number of accumulators.

Assuming a circular image of radius p m , Kiryati and Bruck-
stein [6] have shown that the minimum required number of
accumulators is

amj )+3)/it (14)

where \_x J is the largest integer equal to or smaller than x.
To compare with the Digital Hough Transform a unit square
image is considered. A unit square circumscribes a circle of
radius 0.5 and is inscribed in a circle of radius ^2/2. Rea-
sonably assuming rm « 1, it immediately follows that AA,

the minimum required number of samples in this "analog-
type" Hough Transform satisfies

AA=a
2n

(15)

where 0.5 < a < 1 is a constant. Using the influence func-
tion (13) and the convention that its effective bandwidth is
triple the square root of the normalized second order energy
moment of its Fourier Transform,

a>n=3n/2rm. (16)

Therefore, the minimum required number of accumulators
is:

9n
AA=a

8/, 2 (17)

where rm is the radius of support of the influence function
C(-), and represents the ambiguity in the location of the
data points. Hence, the resolution of this version of the
Hough Transform is upper-bounded either by the assumed
magnitude of edge-point location errors (forcing certain rm

and AA) or by the available number of accumulators AA,
forcing rm to be larger than a certain minimum.

To compare with the Digital Hough Transform, we proceed
to determine (in terms of rm, and through (17) in terms of
AA) the worst-case ambiguity in lines that intersect opposite
sides of the image and set all pixels in between. As in the
case of the Digital Hough Transform, the worst-case
corresponds to lines that are parallel to one of the image
sides and yield collinear edge-points. See Figure 3.

Figure 3. In the Analog Hough Transform [6], the worst-
case ambiguity among lines that intersect opposite sides of
the image and set all pixels in between is associated with
lines thai are parallel to one of the coordinate axes.

If rm « 1 as assumed, one can simply substitute

VN=2rm

in (7), to obtain

(18)
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(19)

This means that the resolution of this Analog Hough
Transform is such that the worst-case ambiguity among
lines that intersect opposite sides of the image is approxi-
mately 4r£ according to the rotation and translation invari-
ant measure of straight lines. The minimum required
number of accumulators is 9a%/&r£, where 0.5 < a < 1 is a
constant. (Note that if the errors in the location of the data
points are mainly due to digitization, choose rm ~ 1/2N ).

CONCLUSIONS

In this paper digital and analog Hough algorithms are com-
pared. The Digital Hough Transform is aimed at detecting
digital straight lines; it implicitly assumes that the discreti-
zation of the image is the dominant source for edge-point
location errors. When the image is corrupted with noise, or
when edge detectors capable of sub-pixel accuracy are
employed, that assumption is not valid. The term "Analog
Hough Transform" refers to algorithms that are aimed at
detecting straight lines in the analog "pre-image". In partic-
ular, the digital approach is advocated by [1]; analog Hough
algorithms are represented by the algorithm of [6].

The comparison is made in terms of the relation between
the achievable resolution in each of the approaches as a
function of the number of accumulators. In the Digital
Hough Transform, the resolution and the required number
of accumulators are fixed and governed by the dimensions
of the digital image, which can only be coarsely modified
by decimation. In Analog Hough Transforms the number of
accumulators (and the resulting resolution) can be set by
design according to specifications.

Resolution is defined in terms of the worst-case ambiguity
in the location of straight lines that intersect opposite sides
of the image and set all pixels in between. Ambiguity is
measured by the translation and rotation invariant measure
of straight lines [12]. A similar approach was used in [5] to
quantitatively evaluate digitization schemes. Worst-case
analysis is convenient and usually meaningful in terms of
engineering specifications.

In the Digital Hough Transform of an NxN image the
ambiguity RDHT(N) is given by (7), and AD(N), the
required number of accumulators, is given by (1). Asymp-
totically,

AD(N) a (20)

In the Analog Hough Transform (of [6]) the ambiguity
RAHT is given by (19), and AA, the minimum required
number of accumulators is given by (17). It follows that

AA a lIRurr. (21)

The comparison between (20) and (21) reveals that, in high
resolution applications, the Analog Hough Transform is

markedly superior to the Digital Hough Transform in terms
of the resolution that an added accumulator "buys".

In the Digital Hough Transform the tessalation of the
parameter space is very non-uniform, meaning that certain
digital lines correspond to small sets of lines in the pre-
image, while other digital lines, that constitute the worst-
case, correspond to large sets of lines in the pre-image. The
"Muff Transform [17] is a variant of the Hough Transform
that has some "digital flavour", yet achieves better unifor-
mity in the tessalation of the parameter space. An important
contribution of [1] is in providing a conceptual link between
the theory of Digital Geometry and Hough Transform
research.
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