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Uejormable models of elastic structures have been proposed
for use in image analysis. The models are based on a
minimum energy principle which incorporates both image
information and "high level" knowledge of the structures
involved. This paper reports a further development of the
Finite Element Method (FEM) for use in active contour
models. It is shown that parabolic and cubic Finite Elements
provide a versatile technique for implementing deformable
models. The method is demonstrated on MR and x-ray images
of brain sections.

1. INTRODUCTION
In a previous paper [1] a modification to FEM, using

parabolic elements, was reported. The method was
demonstrated on "synthetic" arteries and its computational
advantages were discussed. In this paper the parabolic
elements are applied to the detection of structures in real
images.

Hermite Cubic Finite Elements, which permit more
complicated models to be used, are also reported. These offer
faster and more stable convergence to the outline of an image
structure under examination.

FEM in active contours
Models allow the use of high-level knowledge about
expected structures to control the visual interpretation
process. Most work on model-based vision has considered
rigid [2] or parametrized [3] models. Recently, deformable
models have also attracted attention, e.g. [4,5,6,7].
Deformable models are likely to have particular relevance in
medical imaging applications, as a means of encoding the
shapes of anatomical organs, which are inherently variable.
It is shown here that parabolic and cubic Finite Elements,
provide a versatile technique for implementing deformable
models. The models are based on a minimum energy
principle which incorporates both image information and
"high level" knowledge of the structures involved.
As an example, consider magnetic resonance images of brain
sections. In order to accurately detect the boundaries of
certain brain structures, given imperfect image data as
derived from low level image techniques, it is useful to
employ a model of the known "ideal" structure. A "stiff wire"
can often serve as such a model. This model can be specified
by minimising an energy integral, expressing the potential
energy of the "wire" .The model is thus a variational model as
opposed to a geometrical one.
One method for minimising such an integral is based on the
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use of the Euler-Lagrange Theory (ELT) [4,5,6,7,8]. An
alternative method is the Finite Element Method (FEM)
which has been extensively used in computational studies of
elasticity in structural mechanics. It offers many benefits over
the more traditional ELT which has now been largely
superseded.

In section 2 a description of the variational model in use is
given. Section 3 offers an outline of the method. Also the
benefit of Hermite cubic Finite Elements are stated. In section
4 a demonstration of the method in detecting brain structures
is given and a slightly modified energy integral, used as a
deformable model, is discussed.

2. DESCRIPTION OF THE MODEL
The "stiff wire" model is given by the function v(s) that
minimises the integral in Eq. (1)

V
= J a d\

ds
+ y I(s) Ids

(1)
The energy integral J(v(s)) is called a functional since its
independent variable is a function.

• L is the domain of the parameter s (length of the "wire"
model).

v(s) = ((x(s),y(s)) is the position vector on the image in terms
of a parameter s over functions v(s).

• Ivl2 = (x2+y2) is the Euclidean norm.

• The term ctlv'l2 + p lv"l2 represents the elastic energy
stored in the wire

• I(v(s)) is the image intensity, or a function of the intensi-
ty, which acts as an external force deflecting the model
towards the desired configuration.

• The parameters a, p, and y are weights which can adjust
the relative importance of the terms in Eq. (1).

If a > 0, P = 0, the model describes a light elastic string.
If a = 0, P > 0 the model acts like a very stiff thin beam.
Elastic strings are capable of deforming around sharp corners,
whereas thin beams can only sustain smooth deflections.
Thus by choosing a and P appropriately we can adjust the
smoothness of the model. BMVC 1990 doi:10.5244/C.4.58



The final term, I(v(s)), is used to allow chosen features of the
image intensity values to influence the model. In the present
treatment we use the image grey-values along v(s). I(v(s)) is
given a positive sign if the model seeks dark areas (low
intensity values) or a negative sign is used, if bright areas
(maxima of intensity) are pursued.

3.PARABOLIC AND CUBIC FINITE
ELEMENTS
FEM attempts to find an approximate solution to the
minimum of J(v(s)). It works by converting the problem from
one that seeks minima of functionals to one that approximates
minima of ordinary functions of several independent
variables.

In a diagrammatic form

min J (v) -> min J (v.) (2)
vj

where Vj are parameters to be determined, over predefined
points Vj on the s axis.

A general description of FEM is given in [1], where its
advantages for modelling deformable models, for model-
based vision purposes are analysed. Briefly stated, the FEM

approximates the unknown function v(s) over each element1

by the expression:

N

(3)

where ([>j are known Finite-Element basis functions and v: are
parameters to be determined from minimising J(v(s)). Thus
J(v(s)) is a function over each element, of only N parameters
VJ-
The type of element basis functions determines the value of
N.
Parabolic elements correspond to N = 3. Parabolic elements
can only approximate the "elastic string" model, i.e. they can
minimise (2.1) for p = 0 This case was discussed in [1].

Hermite Cubic Finite Elements
In the case that P ^ 0 (Eq. 2.1), the theory of Finite Elements
[9] do not permit the use of Parabolic Finite Elements.
Iinstead Hermite cubic elements must be considered to model
the term P lv"l2.

Hermite cubics have continuous first derivatives and
correspond to N = 4. The positional vector v over each
element is given by:~

v(s)= v(s) = S (vj(t)j(s) + v/
j\/j(s)),

J J J J

where Vj are the deflections at node j , and v'j is the tangent
vector at node j .

Hermite Cubic Elements versus Parabolic
Elements
• Parabolic Elements can be used only for "elastic string"
models. Cubic elements permit the approximation of more
complicated models, such as models with "stiff beam"
properties.

• Hermite cubic elements have the property that the first

derivative is continuous everywhere, and hence even in the
case p = 0, they allow smoother solution than parabolic
elements. Thus when sharp corners are modelled parabolic
elements should be used.

• Hermite cubics are higher order (N = 4) elements than
parabolics (N = 3). They thus give a better approximation to
the exact solution of the minimum of the energy integral and
obtain better convergence for the non-linear system of
equations, resulting from the application of FEM. Higher
order elements capture better the discontinuities in the
external forces [9], represented here by the intensity values.
Thus Cubic elements are better suited for modelling purposes
in vision.

1 The word element is used to denote a subdomain of the in-
terval [0,L].

4. DEMONSTRATION OF HIGHER ORDER
ELEMENTS.
The demonstrations that follow, employ Hermite cubic Finite
Elements which show superior performance. Parabolic
elements are used only in the artery demonstration for
comparison. For convenience, the general term FEM will be
used in this section to denote the Hermite Cubic Finite
Elements.

Demonstrations of the "stiff wire" model, as approximated by
FEM, are given for the detection of arteries in x-ray images
and for the detection of boundaries of brain structures in
Magnetic Resonance (MR) images of brain sections.
Due to the non-linear terms in Eq. (1), which describes the
"wire" model, FEM leads to a non-linear system of equations
that has to be solved with a numerical technique. The Euler
time-step method is employed here.
The weights a, P, and y are set an initial value. After a certain
number of iterations the parameter p is lessened in order to
allow the wire to settle in the minima or maxima of intensity
values (section 2).

4.1 CT slices
In the CT slices the configuration of arteries is sought. A
Gaussian of a = 1.5 has been used to reduce the noise. The
position of the arteries, shown as black or dark gray ribons in
Figure 2, are represented by areas where there is a dip in
intensity values. Thus minima of intensity values are sought
and hence y> 0 (Eq. (2.1)).

4.2 MR slices
In the MR images the task of detecting boundaries of
different tissue type structures has been set. Each tissue type
has an almost invariant grey level value.
The images have been blurred to reduce the noise, and
differentiated so that maxima of intensity values occur where
there is a difference in tissue type, i.e. where a boundary
between certain structures appears. In this case y < 0.

4.3Problems encountered in MR slices.

4.3.1 Partial Volume Effect
The thickness of the magnetic resonance slice (about 8 mm)
gives rise to partial volume effects. This creates multiple step
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edges instead of a single one on the area of the structure's
boundary. When these edges are differentiated they give rise
to multiple maxima.
This causes the wire model to proceed further in the interior
of the boundaries where it settles in "satisfactory" maxima
(Figure l(f))-

4.3.1 Clusters
Bright areas occur further inside the boundaries of the
ventricle's posterior horns (Figure 1( f)). These areas act as
"attractors" for the model creating clusters of points. To
avoid these clusters the penalty function given in Eq. (4) is
employed.

4.4 Penalty function
A modification of Eq. (1) can be used in order to prevent
cluster formation. This involves the addition of a penalty term
to Eq. (1) given by:

V
(4)

where PEN is a weight controlling the importance of this term
over the energy integral, and 8 is a small number, introduced
to prevent division with 0 when x j = Xj+J and yj = yj+i

Extra care has to be taken when using the penalty function.
This is due to the instability that (4) brings to the non-linear
system of equations.

ACTIVE CONTOURS VERSUS EDGE
DETECTION TECNIQUES
Active contours have very desirable properties, especially for
interactive segmentation of images. Medical images
commonly have poor signal to noise ratios, and are often used
to investigate anatomical structures that have poor contrast in
the image. Manual intervention by highly skilled personnel
using a pointing device is frequently used to identify and
delineate anatomical structures; tools to assist the process are
needed.

Conventional edge-tracing techniques have limited utility in
low-contrast conditions. Edge-detectors such as the Marr-
Hildreth [10] or the Canny[ll, 12]operator initially classify
individual pixels as "edgels", according to a strictly local
property of the image distribution. Edgels are then typically
grouped into connected strings, according to a strictly local
definition of connectivity. This phase of the edge-description
process represents a major problem in practical systems. The
Canny operator fails to produce connected strings at T-
junctions (Du Li 1989, [13]). The Marr-Hildreth operator is
guaranteed to produce closed connected curves, but in low-
contrast conditions this is often done at the expense of
following random paths through noise.
Deformable models automatically lead to connected
sequences, and help to simplify any poorly defined areas, by
imposing a predefined structure. They adopt a final position
which is the globally optimal solution (in the sense defined by
the deformation forces and the initial conditions).

Demonstrations on MR slices of brain
Figure l(a) shows part of an MR image of a brain section.
The result of applying the Canny operator is shown in Figure
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l(b&c). Thresholds in the connect algorithm were adjusted
so that the ventricles (lower part of figure) stood out to the eye
in Figure 1 (b) and the head of the caudate nucleus (upper part
of figure) was best visible in Figure l(c). There is clearly a
great deal more clutter in the latter, and both edge maps show
many discontinuities.

Figure l(d) shows the positions adopted by the FEM snakes,
superimposed on the connect algorithm output shown in
Figure l(c), both using the same smoothed modulus of
gradient image. In all cases the snake was initially looped
very approximately around the structures by eye, with fixed
points at the ends only (Figure l(e)), and then allowed to
contract under the elastic forces until it stabilised in the
gradient image (Figure l(f)). The smoothing and connecting
properties of deformable models is evident.

In Figure l(f) the "active contour's" position is further inside
the outer boundary of the posterior homs of the lateral
ventricle. The "contour" prefers to settle there instead of
settling on the "edges" of the above mentioned structures,
even though these two positions have similar intensity
profiles. This is due to the fact that the elastic and stiffness
energy are smaller on the settled position

Demonstration on CT images of brain arteries
Hermite Cubic Finite Elements not only give a smoother final
configuration (Figure 2(b)) but also arrive at the final position
in far less number of iterations than Parabolic Elements
(Figure 2(c))
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Figure la. MR image of brain section Figure lc. Canny edges, using
law thresholds for the connect

Figure lb. Canny edges, using high thresholds
for the connect phase

Figure Id. Settled configuration of
snakes superimposed on connected
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Figure 2a. Initial position

Figure le. Initial configuration
of snakes on the gradient image

o*»

Figure If. Stable configuration
of snakes
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Figure 2b. Final position
(Hermite Cubic Elements)
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Figure 2c. Final position
(Parabolic Elements)

Figure l(a-f). A comparison between the Canny
edge detector and the snake algorith
in an MR image

Figure 2(a-c). Comparison between
hermite cubic and parabolic FEM,
inan x-ray image
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