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We describe a robot vision system which produces a depth
map in real time by means of motion parallax or kinetic
depth. A video camera is held by a robot which moves so
that a given point in space is kept fixated on the centre
of the camera's imaging surface. The optical flow is cal-
culated in a Datacube MaxVideo system and a full-frame
depth map is produced 12.5 times per second. Calculated
depths show an average 10% discrepancy with measured
depths over 7 nonconsecutive images.

sponding to the direction of the target point which are
closer to the robot than the target point would indicate
the presence of an obstacle.

The first step in this process is the construction of the
kinetic depth system and the second step is to evaluate
its sensitivity to system parameters. We describe the
kinetic depth system here and give preliminary results of
the evaluation.

For an observer fixating a point in space and moving per-
pendicularly to the direction of gaze, objects in front of
the fixation point appear to move in the opposite direc-
tion and objects behind the fixation point appear to move
in the same direction. The speed of apparent motion is
proportional to the distance of the object from the fixa-
tion point. This phenomenon is known as kinetic depth.
If the parameters of the observer's optical system and
the details of the observer's motion and fixation point
are known, then measurements of the speed and direc-
tion of apparent motion of an image point (optical flow)
give the distance of the corresponding object point from
the observer.

We have constructed a kinetic depth system which pro-
duces a depth map once every 80ms [1], A robot, holding
a video camera, moves along a fixating trajectory. The
time and space derivatives of two consecutive video im-
ages are calculated in a Datacube MaxVideo image pro-
cessing system and combined to give a 512 x 512 pixel
depth map at half frame-rate.

It is planned to integrate such a depth-detection module
into an existing assembly robot vision system, SOMASS
[2], for the purpose of obstacle avoidance. Before mov-
ing the hand which is holding the camera to a particular
3D target point, the robot would execute a fixating mo-
tion about a suitable point and build up a depth map.
Any depth points in the region of the depth map corre-
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THE KINETIC DEPTH SYSTEM

The work reported here was inspired by the Rochester
Robot of Brown, Ballard et al. [3], which integrates many
primate-like visual functions such as vergence, control of
gaze direction, saccades, etc. as well as kinetic depth,
into one robot head-eye system. Our system, which is
modelled after its kinetic depth system, is shown in Fig-
ure 1. A Sony CCD video camera is attached to the
gripper of an Adept robot. The robot is programmed to
move the camera along a straight line perpendicular to
the optical axis, changing the yaw angle during the mo-
tion so that the same point in space, the fixation point,
is always imaged onto the centre of the camera's imag-
ing surface. The optical flow is calculated in a Datacube
MaxVideo image processing system and a depth map is
produced at half frame-rate (12.5 times per second).

It is important to know how accurate the depth maps
produced by such a system are, and how sensitive they
are to the system parameters: robot velocity, fixation
point position, camera focal length and pixel width. We
have carried out experiments in which these parameters
were varied in order to assess whether it will be possible
to integrate this subsystem into the SOMASS assembly
system.
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if the imaging plane is at (0, 0, —/) where / is the focal
length of the camera's lens. Restricting camera motion
to small movements along the X-axis, so that Vy ~ 0,
Z is almost constant and Vz is very small (foveal ap-
proximation), and for Z » f, we have u =s —fVx/Z
and u = 0. Combining this equation with the brightness
change constraint equation, Ixu + It = 0, where Ix and
It are the partial derivatives of image intensity with re-
spect to image x coordinate and time t [5], we obtain a
simple equation for Z, the distance of the object from the
camera:

Z =
AIX

Ix + Bh (1)

Figure 1: Schematic of the kinetic depth system. Inset
shows fixating movement of camera

where

= A)» B = -Z0/fVc.
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Figure 2: Geometry of kinetic depth

This is the kinetic depth equation.

Thus, a depth map can be obtained if the time and
space derivatives of the image intensity can be calcu-
lated. These derivatives and the depth Z are calculated
in a Datacube MaxVideo image processing system, and
the results, in the form of a false colour image with each
pixel representing a depth value, can be displayed in real
time on a colour monitor.

The depth map of an image can easily be calculated. A
full treatment is given by Ballard and Ozcandarli [4]; we
give the essential details here. From Figure 2 we see that
if the camera is moved along a straight-line trajectory
with velocity Vc, fixating at a point a distance Zo away,
then some other point a distance Z away will appear to
move with velocity V, where

= -(Zo-Z)/Zo

so that if we know V, Vc and Zo, we can calculate Z. The
robot is programmed to move the camera with known
velocity about a known fixation point, i.e. we set Vc and
Zo ourselves.

The velocity of the object point can be calculated from
the optical flow in the image. If the object is at the point
{X, Y, Z) in 3D space and has velocity {Vx, VY,VZ), then
the optical flow (u, v) at the corresponding point in the
image is

Figure 3 shows how this is done. The time derivative
It at time t is produced by taking the difference of two
consecutive images:

h{t, i, j) = [I{t, i, j) - I{t - 1, t, j)\/At

for a pixel in column i and row j with At being the
time between frames (40ms). This calculation is car-
ried out using the subtraction function on the Datacube's
MAXSP board. The space derivative Ix is produced for
alternate images by convolution with a gradient mask on
the VFIR board:

*, *, 3) =

where Arc is the width of a pixel on the camera's imaging
surface. The derivative images are circulated through the
MAXSP board again where they are combined according
to equation 1 in a two-input 6-bit look-up table to give
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Figure 3: Vision implementation in the Datacube. The
boards used are DG:digimax, FS:framestore, MS:maxsp,
VF:vfir

Figure 4: Depth map. Greyscale indicates depth: white
is no data or Ocm, black is 255cm or further. The slanting
stripes are the edges of inclined wooden strips resting on
a table, the vertical stripes to the left of centre are the
edges of a metal support post, and a cable crosses the
top-left corner

depth values. With additional Datacube boards we would
not need to recirculate the derivative images; we would
be able to calculate the kinetic depth in one pass, and
use an 8-bit look-up table, giving finer resolution for the
calculated depths. The depth map is displayed in false
colour on a monitor. A typical depth map is shown in
Figure 4.

It can be seen that depth values are available in the re-
gions where there is an appreciable intensity gradient,
and that there are large, virtually noise-free, regions in
between, where the computed depth value is zero. The
space derivative of the image is particularly sensitive to
point noise and it was necessary to reduce this by ig-
noring depth values calculated at those points where the
intensity space derivative Ix is small.

Image
feature

1
2
3
4
5
6
7
8
9

10
11
12
13

Computed
depth
(cm)

82
95
77
88
39
37
55
49
57
48
95

102
88

Actual
depth
(cm)

73
89
73
89
42
42
59
59
55
55
84

115
102

%
difference

12
7
5
1
7

12
7

17
4

13
13
11
14

Table 1: Depth values

SYSTEM ANALYSIS

Table shows a comparison between computed and actual
depth values for several objects. Each value is an average
over 7 views of particular features in the image. The
depth value of a view is computed as an average over
nonzero depth values in an 8x8 window placed on the
image feature; about 25% of points in a typical window
give no depth information.

A depth value at any particular image point is often
within 20% of the actual value, but can be up to 100%
larger. The average depth value for a window was up
to 60% away from the actual value, but was within 15%
more than half the time. In a robotic obstacle avoid-
ance system we would expect to calculate depths by av-
eraging over several consecutive images; the depth values
averaged over 7 images (not consecutive, and thus from
noticeably different viewpoints) shown in Table are up
to 20% away from the actual values, but often show less
than 10% discrepancy.

These values can be compared with those of Skifstad and
Jain [6], who calculated depth maps in an off-line fashion,
displacing a camera a fixed distance between acquisition
of each image. For camera displacements perpendicular
to the optical axis, they measure (relative) depths which
show a 35% discrepancy with the actual values for a se-
quence of images. (The relative depths were accurate
only to a scale factor: the actual discrepancy may thus
be larger or smaller.)

Previous experiments used a smaller robot (UMI RTX)
which was not able to move smoothly in the Z = 0 plane
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when loaded with the camera, and which jittered during
the motion. Although the joint velocity of this robot was
constant, the linear velocity of the gripper was not and an
average value had to be used in calculations. The best
depth values measured with this system showed a 30%
discrepancy with the actual values, i.e. worse than the
results above. Evidently some improvement in depth val-
ues was achieved by using a robot which could move with
a constant linear velocity along the X-axis, in keeping
with the simplifications in the mathematical treatment.

The velocity of the Adept is subject to a measurement
error of 10%; velocities typically in the region of 12cm
s"1 were used. The camera had a focal length of 16mm
and a pixel width of 17.89/zm and the results shown above
are for a fixation distance of 85cm. It is to be expected
that the system be sensitive to these parameters and also
to image brightness, lighting conditions and the camera
gain and we are investigating this.

Equation 1 was derived for a camera moving along a lin-
ear trajectory but it did not take into account the vari-
ation in ZQ and Z that this would produce. Further ex-
periments in which the camera moves along an arc will
show how this affects the computed depth values. We
also expect to see a pixel quantisation effect arising from
the fact that changes in image intensity are continuous,
but can only be measured pixelwise.

DISCUSSION

We have shown that a real-time kinetic depth system can
produce reasonable depth values quickly and presented
a different, less hardware-intensive implementation than
that of Ballard and Ozcandarli [4].

It is clear from Table that the depth values our system
computes are less accurate than those available from, say,
stereo vision systems or laser stripers. However, a new
depth map is produced every 80ms; using every image
field instead of every frame would reduce this to 40ms,
and with one extra Datacube board, this could be further
reduced to 20ms. Apart from the necessity of moving the
camera with a predictably linear velocity, the factors af-
fecting the accuracy are still uncertain, although they will
certainly include those mentioned in the previous section;
we can calculate statistical errors in the data reduction
and the discrepancy between actual and computed val-
ues, but do not yet know how large any systematic errors
might be.

What accuracy do we require of our depth maps? This
depends on the nature of the visual task. If the visual task
is obstacle detection, which requires a simple yes/no an-
swer (i.e. qualitative vision [7]), then estimates of depth
which are quite inaccurate are sufficient for coarse robot

motion. Moreover, a system which is designed to take
such inaccuracy into account will be robust. If an ob-
ject is to be approached and picked up by the robot,
then more precise methods must be called into play, for
example, the stereo visual servo system of Conkie and
Chongstitvatana [8] which is also being integrated into
the SOMASS system and which guides a robot hand to
a visible target.
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