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A cooccurrence space is defined by utilising the com-
binations of pizel strengths defined by a Canny
edge operator. A region and boundary segmenta-
tion derived from this space is first edge thinned
by non-mazimal suppression and then hysteresis 1is
used as a posi-processing step to improve the edges.
The distributions in cooccurrence space define the
thresholds employed in the hysteresis post-processing.

It will be shown that edge detection, including non-
maximal suppression and hysteresis post-processing,
may be combined naturally with region segmentation.
Examples will be given which demonstrate that this tech-
nique performs better than conventional segmentation or
edge detection techniques.

The cooccurrence matrices [1] of an image exhibit second
order statistical properties. Hence they may be utilised
to analyse images which may be characterised by their
second order statistics; the matrices being interpreted
as feature spaces. In particular, the nearest-neighbour
cooccurrence matrix of an image composed of regions
of distinct intensity which are separated by boundaries
one pixel wide may have elliptical classification regions
defined within it, and the original image may then be
segmented by mapping pixel pairs from image space to
cooccurrence space[2]. The result of such a mapping is
that every pixel is assigned to a class of region and is
also identified as interior or edge, relative to the cooc-
currence direction. Since the classification involves only
pairs of pixels, the effect of noise is to create disconnec-
tions between edge elements and isolated misclassifica-
tions. Both errors are aggravated if the region bound-
aries are more than one pixel in width.

The use of the intensities of a pair of adjacent pixels as
a boundary indicator is analogous to applying a first or-
der finite difference operator as an edge detector, since
in both cases the difference of the intensities is taken as
a measure of the likelihood of the existence of an edge
or boundary. Conversely, an optimised edge detector,
such as a Canny operator[3], provides the optimal com-
bination of strengths of extended sets of pixels in terms
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of which a region-edge segmentation may be achieved.
An implementation of such a segmentation algorithm is
described in section 2.

The use of extended pixel combinations effectively re-
sults in the removal of isolated pixel region misclassifica-
tions; however it has the drawback that it may cause the
appearance of thick boundaries. These may be thinned
using the same non-maximal suppression and hystere-
sis post-processing as employed in realisations of Canny
edge detectors[4]. As shown in section 3, the extent and
degree of overlap of the region and edge distributions
in the cooccurrence space provide natural, and intrinsic,
definitions of the upper and lower thresholds used in the
edge thinning by hysteresis.

1 Cooccurrence Matrices

Consider an image of dimensions L x L whose intensity,
i(x) is sampled at 2N x 2N equidistant points indexed
by

x=(1-1/2)Az i+ (m-1/2)Ay] (1)

with —(N — 1) < I,m < N, and Az = Ay = L/(2N).

A Canny edge operator forms an edge strength, e 5 (x),
from an intensity image by a (2n + 1) element
convolution[5].

ks

ea(x)= Y E(k)i(x+kA) (2)

k=—n

where A defines the direction normal to the edge. An
edge image may then be formed by combining the edge
strengths from orthogonal i and j directions.

Since the Canny operator has been optimised for step
edge detection at any given resolution we infer that the
left and right combinations of intensity defined by it are
appropriate for the formation of a cooccurrence feature
space for region and edge segmentation. The correspond-
ing cooccurrence matrix is defined by
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where 6(7;j) is a Kronecker delta function and

S k-1 E(k)i(x + kA) is the intensity arising from one
lobe of the Canny operator.

The general structure of a cooccurrence matrix consists
of a set of distributions close to the leading diagonal of
the matrix, these being characteristic of regions, and an
accompanying set of off-diagonal distributions, which are
characteristic of edges. The region distributions are cen-
tred on the mean intensities of the regions; those of the
edges are centred on the intensity pairs corresponding
to the mean of the intensities of the contiguous regions.
Consider a simple square image of uniform grey level a
with a smaller embedded square of uniform grey level 3.
The nearest horizontal neighbour grey level cooccurrence
matrix of this image will contain delta functions at (o, a)
and (3, 5) which correspond to the mean intensities of
the two regions and whose magnitude is proportional to
the size of the regions. There will also be much smaller
delta functions at («, 8) and (3, @) corresponding to the
boundaries between the regions, the magnitude of these
delta functions will be proportional to the length of the
vertical boundary between the two regions. If the image
was corrupted by additive gaussian noise of standard de-
viation o then the delta functions in the cooccurrence
matrix would become gaussian.

The cooccurrence matrix can be labelled to indicate
those parts of the matrix which correspond to partic-
ular parts of the image. For example, an ellipse drawn
at a radius of 30 from the centres of the distributions
could be used as a decision boundary on whether con-
tributing pixel pairs were from region «, 3 or the bound-
ary between the two regions. This example of a labelled
cooccurrence matrix is shown in figure 1, with two re-
gion distributions centred on (o, @) and (3,5) and two
boundary distributions centred on («,3) and (3,«a). A
cooccurrence matrix may be identified as a feature space,
with classification regions defined therein by fitting bi-
normal distributions to the region and boundary distri-
butions, the ellipses so obtained defining the decision
boundaries.

For images which are corrupted by uniform additive
gaussian noise, the region distributions are well approx-
imated by elliptical Gaussian distributions centred on,
or near, the leading diagonal of the matrix, with major
axes along the leading diagonal. The minor axes, normal
to the diagonal, are proportional to the standard devia-
tion of the noise in the image and are therefore constant
and may be determined from the noise statistics[6], while
the along diagonal axes may be determined by analysing
the histogram formed from the leading diagonal of the

cooccurrence matrix. The edge distributions can be ap-
proximated by circular gaussian distributions centred off
the diagonal and on the paired mean intensities of two
different regions.

2 Segmentation

An image is segmented relative to a given cooccurrence
direction by mapping the pairs of convolved intensities,
(Cr_1 E(k)i(x — kA),Sr_; E(k)i(x + kA)) to a loca-
tion within the cooccurrence matrix, S (4, j), and then
assigning the pixel at x to the region class or edge de-
fined by the decision region within which (7, ;) lies in
cooccurrence space.

The result is that each pixel of the image has been as-
signed either to a distinct region class or is classified as
an edge pixel. A separate classification is made for each
of two orthogonal cooccurrence directions. Inconsistency
of region classification may occur between the two cooc-
currence directions. Such ambiguity is removed by as-
signment to the class with mean closest to the mapped
intensity pair. A pixel is classified as edge if an edge
strength exceed a given threshold.

Should the mean intensities of contiguous regions be
‘similar’ then there may be a significant overlap between
the region and edge classification ellipses in cooccurrence
space. In this case, the cooccurrence space is labelled as
edge where the distributions overlap.

3 Edge Thinning

The edges are of widths of the order of the extent of the
Canny operator. Each edge pixel has associated with
it the edge strengths in the two orthogonal directions.
Hence a non-maximal suppression algorithm[4] may be
employed. In conventional non-maximal suppression, an
edge point would be eliminated if it is not a local max-
ima within the range of influence of the Canny operator.
In this work, the edge point is relabelled as region, the
actual label being determined by the region of which the
local maxima is a boundary.

So far, the cooccurrence space has been labelled in a
simplistic way. By extending this labelling, thresholds
which can be used in the hysteresis post-processing can
be built into the labelled cooccurrence space.

If the matrix is summed parallel to the leading diagonal

N N
Hk)= >, D Sa(mi) k=1+j ij=12..N (4

i=—Nj=—-N

then the resultant histogram is essentially the histogram
of edge strengths in the convolution of the image and the
canny edge operator.
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In conventional hysteresis processing, edge strengths
above an upper threshold T, are considered edge points
and are used as seeds. Pixels which have an edge
strength above a lower threshold T; are considered to
be edge points if they are connected to a seed point
(possibly via other non-seed points which have an edge
strength above Tj).

In our labelling of the cooccurrence space, T, corre-
sponds to the cross-diagonal spread of the region ellipses.
Where region ellipses overlap, T;, may be locally reduced.
The lower threshold T; corresponds to overlaying a sec-
ond labelling of the matrix using ellipses with smaller
cross-diagonal spreads. These ideas are illustrated in fig-
ure 2 which shows the basic labelling of the feature space
for a high threshold T, (bold lines) and the labelling for
the lower threshold T; (dotted lines). The upper thresh-
old has been locally changed near the intersection of the
two region distributions.

Although the hysteresis post-processing may appear sim-
ilar to that of reference 4, there is the distinct advantage
that the thresholds are being determined from the data
rather than supplied externally and that both the thresh-
olds T,, and T} are not necessarily uniform throughout
the image. Both T, and T} may be locally reduced if
there is evidence for this. Furthermore, this technique
also results in a segmentation of the major regions in the
image.

4 Examples and Comparisons

A typical forward looking infrared (FLIR) image is
shown in Figure 3: the picture is of a bridge over a
river with a hillside and cliff in the background. Hot
(white) parts of the cliff are reflected in the river, as is
the sky, parts of the bridge and hillsides, A seven pixel
resolution realisation of the Canny operator as derived
by Spacek [7] was utilised to segment the image as de-
scribed above. The resulting segmentation into four dis-
tinct region classes and boundaries is shown in Figure
4: the boundaries are shown as black. The non-maxima
suppression and hysteresis processing described in the
previous section has been applied and the results are
shown in figure 5. Note how many of the fine lines have
been obtained along the edge of the river below the base
of the cliff. This is a part of the image in which it is
very difficult to discern the river by eye and on which
other segmentation and edge detection techniques gen-
erally fail. These lines are particularly obvious in figure
6 which shows only the edge map.

5 Conclusions

In this paper a technique has been presented for com-
bining a simultaneous image segmentation and edge de-
tection technique with a standard post- processing tech-
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nique for improving edge detection. The majority of the
proposed technique is inherently parallel and is believed
to be, by its formalism, better than comparable edge de-
tection techniques. In addition, the technique results in
both a segmentation and an edge map, a characteristic
missing from the majority of techniques.
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Figure 1 Labelled cooccurrence space Figure 2 Labelled cooccurrence space for hysteresis

post-processing

Figure 3 A forward look infrared image of a bridge over ~ Figure 4 Segmentation and edge image of the FLIR
a river. image using a seven point Canny cooccurrence matrix
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Figure 5 The result of non-maximally suppressing the  Rjgure 6 The edge map of figure 5.
edges in figure 4 and applying hysteresis post processing.
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