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This paper presents a fast algorithm for computing local
symmetry descriptions of region shape. Like previous al-
gorithms, it extracts groups of edge points tangent to a
common circle. However, by examining the number of
distinct points of tangency, the new algorithm separates
groups belonging to round regions from those belonging
to elongated regions. Thus, when these relations are con-
nected to form extended regions, round and elongated re-
gions can be processed differently.

The new implementation uses an edge-tracking algorithm
to build extended regions. This handles the effects of lim-
ited precision and shape irregularities better than axis-
tracking methods. In particular, Blum's idea of locat-
ing SAT branch points can be converted into a practical
method of detecting locations at which three or more re-
gions join. By combining a new density constraint with
constraints used previously, the output and much of the
processing is made linear in the image area.

One method of representing region shapes is to extract
symmetry sets, 1 i.e. sets of edge points tangent to a
common circle (the symmetry circle), and then group
these sets into extended regions (Figure 1). These local
symmetry relationships form a intermediate representa-
tion between raw edge points and descriptions of whole
regions. Thus, a wider variety of regions can be identified
than with whole region models as in [1].

However, existing local symmetry algorithms [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13] and theoretical descriptions
[14, 15, 16, 17, 18, 19] are all unsatisfactory. Some al-
gorithms are slow [8, 9], Some handle only restricted
classes of inputs [5, 6, 7] or detect only restricted classes
of symmetries [10]. Some are hard to analyze [3]. Con-
verting the raw symmetry sets into nice-looking regions
requires complex post-processing [2, 8, 9, 12, 13]. Some
formulations [10, 11] are sensitive to clutter and occlu-
sion because they do not allow edges to lie within the
tangent circle.

•The author is supported by a junior research fellowship funded
by BP.

1 Terminology in this area varies conaiderably and a few authors
define this term differently.

Figure 1: Pieces of boundary opposite one another
in an elongated region are tangent to a com-
mon circle (left). Many such pairs can be joined
to represent the whole region (right), with their
midpoints forming its axis.

Underlying these superficial difficulties are deeper prob-
lems. None of these proposals cleanly models the dis-
tinction between round and elongated regions. Some de-
scriptions concentrate on axis or center locations, which
fragment badly in irregular regions. Furthermore, the
number of symmetry relations among edges in an image
grows faster than the area of the image, slowing down
both the symmetry algorithm itself and any subsequent
processing.

This paper presents a new algorithm that classifies sym-
metry sets as belonging to either elongated or round re-
gions, so later processing can be adjusted for the type
of region. Construction of extended regions uses edge
tracking, not center or axis clustering. The algorithm
can detect not only extended round regions, but also con-
nectors where several regions join. Symmetry relations
are constrained so that the number of raw symmetry re-
lations, the number of output regions, and much of the
processing is linear in the image area.

THE IDEAS
Classifying symmetries

In order to compute stable, intuitively acceptable local
symmetry descriptions of shape, it is essential to distin-
guish round regions from elongated ones. In an elongated
region, the symmetry pairs contain points opposite one
another on two extended edges, as in Figure 1. The
points midway between the two points in each symme-
try pair form a natural axis for the region. The distance
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between the points supplies a local width.

The local relationships in a round region can also be rep-
resented using symmetry sets. However, such a region is
most naturally represented by relating many edge points
to a common center, as in Figure 2. This center is at or
near the centers of the symmetry circles relating the re-
gion's edge points to one another. With each edge point
is associated a radius and an angular position.

When symmetry sets from round and elongated regions
are given the same processing, this favors one of the two
types of regions. Treating round regions as if they were
elongated [7] results in large numbers of unstable axes.
Treating elongated regions as round [3, 10, 11, 14, 15, 16]
yields counter-intuitive descriptions of the width of, and
the area enclosed by, tapered regions. Leyton's PISA
points [18, 19] invite both sorts of problems. Previous
algorithms for separating the two cases [2, 8, 9] have been
messy and ad hoc.

Therefore, the two types of regions should be distin-
guished after computing symmetry sets, but before sym-
metry sets are linked together into regions. I claim that
the two types of symmetry sets can be distinguished by
how many times the symmetry circle is tangent to the
edges. Symmetry sets with two patches of tangency be-
long to elongated regions, whereas those with three or
more patches of tangency are parts of round regions.

More precisely, in order to be considered multiply-
tangent, I require that a symmetry set contain at least 3
edge segments, each pair at least 40° apart. Failing this,
the symmetry set is classified as doubly-tangent if it con-
tains a pair of edge segments at least 80° apart. All other
symmetry sets are discarded. These thresholds prevent
slight perturbations in edge orientation from generating
symmetry relations.

Doubly-tangent symmetry sets occur in two intuitively
distinct environments: elongated regions and corners.
Multiply-tangent symmetry sets occur both in round re-
gions and at connectors, where several regions join. The
images shown in Figures 3^4 illustrate all four types of
regions. In irregular round regions, the centers of the
symmetry circles scatter, but the algorithm described
below still collects them into coherent regions.

The idea of classifying symmetry sets by patterns of tan-
gent points goes back to [10, 11]. In particular, con-
nector regions are closely related to Blum's SAT branch
points. His original proposal, however, contained three
fatal flaws. First, the cloud of symmetry sets generated
by an irregularly circular region were not merged into
a single region description. Second, resolution was not
adjusted to prevent small irregularities from sabotaging
the descriptions of large regions. Finally, his descriptions
focus on the axis or circle center points, rather than on

Figure 2: In a round region, sets of three or more
pieces of boundary are tangent to a common cir-
cle (left). Sets with similar centers are merged to
represent the whole region in terms of a common
center (right).

Figure 3: The boundary of a wrench (top), axis
points for elongated regions and circle centers
for round regions (upper middle), connected par-
tial regions whose widths are not too large for
their boundary lengths (lower middle), and pos-
sible connector regions (bottom).
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the relationships among edge points.

Good and Bad Symmetries

An image containing L edge segments can generate at
least O(DL) symmetry sets, where D is the diameter of
the image (i.e. the maximum distance between any pair
of points in it): consider a set of parallel line segments.
It can generate at most L2 symmetry sets, although it is
unclear whether this maximum can be attained. Many
of these theoretical possibilities, however, do not rep-
resent parts of intuitively important regions. The new
algorithm uses four constraints to limit the number of
symmetries to O(L). The underlying principle is not to
waste effort computing symmetries that are doomed to
be pruned by later processing.

The first constraint ("minumum angle") is that the edge
segments in each symmetry set must span a minimum an-
gular range (currently 80 degrees), a consequence of the
classification thresholds given above. As a consequence,
the algorithm need not consider circle radii larger than
2cos(40)D, where D is the image diameter, because they
cannot generate acceptable symmetries. Similar restric-
tions were imposed in [7, 8, 9].

The second constraint ("aspect ratio") is that a good
symmetry region must relate edge curves that are long
compared to the region's width [2,8,9]. Short regions are
less acceptable intuitively and statistically more likely to
occur by chance. For this reason, as the symmetry circle
radius is increased, edge orientations are computed using
wider support along the edge curve. This constraint does
not apply to connector regions.

Segments near a sharp bend in an edge have a wide range
of orientations, due to smoothing in the orientation com-
putation. Very sharp bends are excluded from the sym-
metry computation (as in [7]) because they would gen-
erate large numbers of purely accidental symmetry rela-
tions. From this "curvature limitation", it follows that
computed normals in other sections of the edges change
only slowly, so the symmetry computation can consider
only a sampling of the edge segments.

The final, "density" constraint on the symmetry compu-
tation requires that symmetry sets must become sparser
as their radius is increased. This is essential to ensuring
linear output and is enforced implicitly by some algo-
rithms [2], but it has not been articulated before. As
Figure 5 illustrates, parallel edges generate many sym-
metries, violating this constraint. However, only narrow
ones, or those that are locally minimal or maximal (e.g.
that between the extreme ends of the radiator) seem in-
tuitively interesting (compare the fork example in [12]).

Figure 4: The boundary of a hemostat, elongated
regions, round regions, and possible connectors.

Figure 5: The n parallel edges in the radiator gen-
erate n2 symmetry regions, but few are perceptu-
ally significant.
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Figure 6: The chain-link length of a curve is the
length of a set of line segments approximating
the curve, each no shorter than a constant c.

THE ALGORITHM

The constraints described above make it possible to build
a fast algorithm for computing and classifying symmetry
sets. This initial stage of the computation is done sep-
arately for each circle radius r, 0 < r < 2sin(40)D. To
prevent the description of a region from depending on
its size, all thresholds used in the shape computation are
proportional to the current radius. To enforce the den-
sity constraint, only selected radii are considered, though
quantization in the algorithm allows symmetries at other
radii to be detected. The sampling rate varies smoothly
with the radius and is 1 radius value per max(l, ^ ) .

Basic symmetries

The input to the algorithm is a set of circular, doubly-
linked lists of edge segments, provided by the edge finder
described in [20] and the tracker described in [21]. Intu-
itively, an edge segment is a section of boundary with a
designated inner and outer side. This designation makes
the edge segments easier to manipulate than raw bound-
ary segments: they form simple closed curves and each
belongs to at most one symmetry set per radius.

Various parts of the computation must measure the
length of an edge. Under the standard definitions, fine
texture increases curve length, which changes coarse-
scale shape analysis. To avoid this problem, I use a
new chain-link measure of curve length, an easily com-
puted approximation to the methods in [2]. The curve
is approximated with a series of line segments, ending
at points on the curve (Figure 6). The endpoints are
chosen as close together along the curve as possible,
but each segment must be at least c pixels long, c is
a constant proportional to the symmetry radius, cur-
rently max(l, jfi). As c is increased, any fine texture
is smoothed away in the approximation, so it does not
affect edge length.

At each radius, the lists of edge segments are sampled at
a rate of one element per max(l, yj) units of chain-link
distance along the edge. The sampled list is represented
by adding a second set of links to the input list. The ori-
entation at each sampled segment x is then computed.
It is the direction of the vector from the point D cells be-
fore x along the sampled contour to a point D cells after

it, for some constant D (currently 5 cells). To implement
the curvature limitation described above, x is excluded
if the straightline distance between x — 5 and x + 5 is too
small (< l0sin(b)r), or if its sampled contour contains
fewer than 40 edge segments.

The algorithm then computes the symmetry center at
radius r, for each edge segment x. This is just the point
at distance r from x, in the direction normal to the edge,
moving away from the boundary. The edge segments
associated with each center are stored in a collector. The
x- and y- components of center locations are quantized at
a rate of mox(l, yjj) image cells per collector cell. Each
segment is placed in the appropriate collector cell, plus
the eight immediately adjacent ones. The collector is
currently an array, but could also be implemented as a
hash table (more efficient for sparse images).

Classification

Each symmetry set in the collector is classified as doubly-
tangent, multiply-tangent, or no-symmetry using a buck-
eting technique. The algorithm determines which orien-
tations are present in the symmetry set, but quantizes
them to the nearest 20 degrees. The pattern of quantized
orientations is then analyzed to determine whether they
meet the angular criteria for either type of symmetry set.

A doubly-tangent symmetry set may actually contain
many more than two edge segments, due to the quan-
tization of center positions. If all pairs meeting the ori-
entation criteria were returned, all possible symmetry
regions would be found, but this would increase both
the running time and the number of output symmetries
above O(L). Therefore, only a fixed number of pairs is
selected to represent each symmetry set.

The current implementation selects one pair per doubly-
tangent symmetry set, each of whose edge segments is at
the maximum distance from the symmetry center among
all edge segments at that quantized orientation. Alter-
natively, all pairs maximizing the distance could be cho-
sen. Also, minimum distance pairs could be used. Any of
these options, combined with the sampling of radii, en-
forces the density constraint. This constraint eliminates
only intermediate alternatives in wide regions with close,
parallel edges.

When classification for a particular radius is complete,
symmetry sets are removed from the collector and at-
tached to their edge segments. As computation proceeds
through the range of radii, each edge segment accumu-
lates two lists. One contains the symmetry centers and
radii for each multiply-tangent symmetry to which the
segment belongs. The other contains the other edge seg-
ment and symmetry circle radius for each segment in
each doubly-tangent symmetry set it belongs to.
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The work for all radii in this first stage of processing
takes O(L) time. At each radius r, processing at edge
segments requires O(j) time. Searching or clearing the
collector requires 0(£) time for a hash table o rO( | r ) for
an array. Because radii are sampled, however, the total
work is proportional to £^°_0 -^ or £^°_0 -^, where
K is a constant. Since both series converge, the total
work is simply O(L) (hash table) or O(L + D2) (array).
The maximum number of output symmetry relations is
O(L), and O(L) or O(L + D2) space is required.

Building regions
Once symmetry sets are computed for all radii, they are
linked together to form connected partial regions. Local
symmetry representations require regions to have con-
nected edges: any gaps (e.g. due to attachment or occlu-
sion) must be filled explicitly. This connectivity require-
ment is what distinguishes local symmetry representa-
tions from models such as the Hough transform [22, 23].
Irregular regions, particularly round ones, generate loose
clouds of symmetry centers which make center-clustering
or axis-tracking techniques difficult. As in [5, 6, 7, 8, 9],
the new algorithm tracks along edges, using their con-
nectivity to correctly identify related symmetry sets.

The tracker works its way through the edge curves twice,
once building round regions and once building elongated
regions. It uses the original linked lists of edge points,
without subsampling, and considers symmetry sets ob-
tained at all radii. The sampling used in previous parts
of the algorithm means that only selected points along
the edges of each region will have been assigned sym-
metries. In the gaps between them, symmetry relations
must be inferred as regions are constructed.

For each type of region, the main tracker loop repeats
the following sequence of actions:

• Find the next edge segment with a non-empty sym-
metry list,

• Extend the region forwards along the edge,
• Extend the region backwards along the edge, and
• Connect the ends of the region together, if possible.

Each region is represented as a list of ordered pairs of
points: two edge points for an elongated region, or a edge
point and a center location for a round region. Thresh-
olds used by the tracker are proportional to the symme-
try circle radius of the pair on the current end of the
partial region.

Each extension of a region requires three steps:

• Find the next symmetry relation "similar" to the
current end of the region,

• Interpolate symmetries for intermediate points,
• Add the new points to the region, and

• Remove from the edges all symmetries used in this
extension, together with any "similar" ones.

In an elongated region, both edges are extended at the
same rate, until a symmetry is found relating edge seg-
ments in the two extensions.

Two elongated-region symmetries are considered similar
if their radii are similar and their edge segments are con-
nected to and near one another along the edges (both in
segment count and chain-link terms). For round region
symmetries, the center locations must also be similar.
These quantities also must not change too quickly if one
looks a short distance back along the region. In case of
multiple "next" elongated region relations, the one with
the smallest width is chosen. For a round region, all
similar center locations are averaged.

In searching for elongated region extensions and in re-
moving similar elongated region relations, the algorithm
must examine the symmetry lists attached to a number
of edge segments, searching for symmetries to segments
in or near the current extension. To do this efficiently,
special markers are attached to segments in the exten-
sion as it is created. Since each symmetry list contains
pointers to the original edge segments, it is then simply
scanned for marked segments.

Most work in building regions is clearly O(DL): in pro-
cessing symmetry sets of radius r, the sampling of bound-
ary length (j) cancels the effects of the search radius
(r). The exception is deleting marked symmetry rela-
tions attached to edge segments. In this case, note that
each edge segment can have at most £ r = 1 ^ symme-
try relations and can belong to at most O(£f=1 £) re-
gions. Thus, the total number of segment examinations

» °((E?=o ^ T h i s 1S £ « o £f=7 ipfcj which is at
most £?=o£f=T?r. which is at most £ ? = 0 £ ~ 0 £ .
Since the infinite sequence converges, this is just O(D)
for each edge segment, i.e. O(DL) total.

Thus, this second phase of symmetry computation re-
quires O(DL) time in the worst case. However, since
the actual number of symmetries rarely hits the theoret-
ical limits, it usually runs faster than the initial phase
of computation. Since each symmetry pair from the first
stage belongs to one and only one extended region, the
final output contains only O(L) regions, and the total
space required is O(DL).

CONNECTING REGIONS

The output partial regions are easily converted to either
displays or traditional symbolic descriptions (e.g. length,
width). To suppress clutter in the results displayed in
this paper, regions with short boundaries were pruned.
Specifically, round regions were required to cover at least
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80 degrees and the shorter side of each elongated region
was required to be at least half the average width of the
region. This output is as clean than that of previous pro-
grams (e.g. [8, 9]), but would require further processing
to form a final shape description.

An individual symmetry region almost never contains
enough information to suggest a particular object. Thus,
for object recognition, it is necessary to group nearby
regions together into larger configurations. Previous al-
gorithms [4, 5, 8, 9, 12, 13] have divided regions when
they contain sharp changes in properties (e.g. axis ori-
entation). Two regions are then merged if one smoothly
continues the other. Looser associations ("subpart" re-
lations) are created between pairs of regions whose ends
connect, but with a sharp change in properties.

However, when three or more regions join, it may be im-
possible to connect the ends from any pair of regions. As
Figures 3-4 illustrate, the connector regions introduced
above could fill the gap between the other regions and
provide a pair of edge contours for each region to attach
to. Potential connectors are currently identified using a
crude algorithm that finds sets of partial regions with
a common center and at least three gaps, all under 180
degrees. Better algorithms are under development, but
even these preliminary results are much more promising
than those of [10, 11].

CONCLUSIONS

Many people may have been discouraged from using local
symmetry representations because previous algorithms
have either been slow or produced poor quality output.
By contrast, the new algorithm is fast and produces clean
output. For example, the wrench in Figure 3 (315 pixels
long, radii up to 283 pixels) required only 5 minutes on
a Sun-4 workstation. The new algorithm cleanly repre-
sents the similarities and differences between round and
elongated regions in local symmetry representations. It
can also detect a new type of region, connectors, which
should prove useful in grouping regions to form object de-
scriptions. Thus, the algorithm should allow local sym-
metry representations to be used in a wider variety of
applications and with greater success.
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