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This paper describes research into structured,
knowledge-based image interpretation. An integrated
framework has been developed, within which most tasks
associated with the automatic interpretation and
analysis of lateral skull X-ray images (cephalometry)
can be performed. A model-based image analysis
system makes use of a blackboard architecture and
multiple knowledge sources. Its performance compares
favourably to previously published attempts to automate
cephalometric analysis.

Cephalometric measurements, from lateral skull
radiographs, can be of help to orthodontists in deciding
upon the nature of any necessary orthodontic
treatment, or in defining standards for classifying
craniofacial growth. Manual and interactive methods of
performing the cephalometric analysis are
acknowledged as error prone [1,3]. An automated
analysis, using computer vision techniques, that could
provide systematic and accurate results would be of
benefit. Such a system is being developed using
knowledge-based methods.

There are a number of different tasks that need to be
tackled in developing such a system. Reliable methods
need to be implemented to segment individual
anatomical features and landmarks. These must be able
to extract low contrast features in possibly noisy image
areas. We have previously reported one such system
with promising results [2], though modifications are
required to allow a greater use of feature appearance
models. In order to control the segmentation system it is
also necessary to generate image areas within which
specific features are expected to be located An
appropriate declarative knowledge-source, with
associated models, offers a satisfactory approach to the
problem. The full system must be able to demonstrate
various forms of behaviour. A dynamic means of
organising image interpretation tasks, allowing for
different analyses of the same image, must be present.
Alternative solutions to a current task ought to be
allowed. This will entail the use of some constraint
application method that allows the most viable (ie
correct) interpretation to be produced. Blackboard
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architectures, as developed for solving other complex
problems [4] requiring the use of a number of forms of
knowledge, offer a suitable framework for organising
these tasks. Furthermore it would be sensible to develop
the blackboard system within an integrated framework
that permits the use of model building facilities, and
enables the segmentation system to be used in a stand
alone mode. Such facilities can be used to ensure the
validity of newly developed models.

Background

A number of automated cephalometric systems have
been developed [1,9,12]; the most successful being the
Parthasarathy et al [12] algorithmic implementation of
the knowledge-based system of Levy-Mandell et al [9].
This system improves on the performance of the original
by incorporating lessons that became apparent during
the development of the knowledge-based system. The
Levy-Mandell system uses an elementary
knowledge-based approach that works only on
relatively good quality radiographs. It typifies a
methodology which has often been applied to medical
image interpretation. A high level module is used to
model an application, so that particular declarative
features can be matched to the results of a rigidly
defined low-level segmentation module. The
segmentation module typically convolves a low-pass, or
smoothed image, with a particular edge operator to
produce a list of edge segments. Domain knowledge,
usually represented in production rule format or as a
structured set of frames, is then applied to interpret the
list of line segments.

While such knowledge-based systems have achieved
some measure of success the results are heavily
dependent upon the preprocessing and edge detection
processes. When the chosen operators fail, typically
because assumptions about the nature of the image are
ill founded, the whole system breaks down and acts in a
quite unintelligent manner. It has been suggested
[5,8,14] that alternative modes of segmentation,
involving multiple low-level knowledge-based modules
may provide the adaptability required for medical image
segmentation. BMVC 1990 doi:10.5244/C.4.52



Nazif and Levine [11] demonstrated that heuristics,
typically used in imperative segmentation systems, can
be expressed, to good effect, at the production rule
level. Their system perhaps suffers from attempting to
provide a too general solution, leading to ambiguities in
image interpretation. The SIGMA system [9] makes
use of multiple knowledge sources; each with a clearly
designated task. It can be seen as an advance on the
Nazif system, with modules for segmentation, locality
definition and model access. However the nature of
biomedical images and the biological variability
associated with even the most major of features require
more sophisticated constraints and greater subtlety in
system control than industrial, machined part or even
aerial image systems [14].

Overview Of The Image Reasoning Tool

Our initial experiments with lateral skull X-ray images
demonstrated that no sequence of low-level image
processing could be guaranteed to provide cues to
support the presence of a given feature or landmark.
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Figure 1 The Stylised Blackboard Architecture

The variations in image quality, both digital and on the
X-ray film, and in the subtly varying morphology, shape
and visual definition of the biological features sought,

suggested a more adaptable approach to the problem
would be required.
A model of the lateral view of the head could be
developed, using data gathering modules, that would
encompass declarative object definitions and statistics
for object feature appearance and expected areas of
interest within an image. The principle function of such
a model would be to enable the image interpretation
system to reason about application goals using evidence
from the model, and any given images or other sources
of information, in order that these goals be satisfied. It is
envisaged that at various stages in the chain of
reasoning, evidence from the chosen source image
would be required, so that hypotheses regarding the
location of selected features in the source image could
be accepted or rejected. The architecture adopted must
offer the adaptability and necessary structures with
which to co-ordinate the variety of reasoning tasks
required.

Figure 1 depicts the blackboard architecture which has
been adopted in this work. Each of the modular
knowledge sources, whether declarative or imperative,
is designed to undertake specific classes of task. For
instance the intelligent segmentation system (ISS)
attempts to find image feature objects given an
approximate location. Two location systems, both rule
based and using the same generic inference engine, are
used to generate (ALS) and constrain (CLS)
expectation windows for image features. The task panel
management system (TPS) accesses areas of the
blackboard defining found, found and rejected,
searched for but not found, and inactive objects
together with a task specification structure, so that a
currently active object may be defined. The task
specification structure, or task panel hierarchy, is
produced by the task definition system (TDS). This
frame-based hierarchy is generated from a set of
unstructured frames defining object dependencies. The
TASK frame, or hierarchy root, becomes the object the
blackboard system must ultimately satisfy. By finding
objects further down the hierarchy frames are
instantiated. The various levels reflect how frames are
defined on each other and are not dependent upon the
class of frame for any member at any task hierarchy
level.

Object Models

A variety of models are present and available for use in
the blackboard system. Some are purely declarative,
whilst others rely on statistics generated from data
gathering modules accessible from within the AITOOL
system. A combination of these two classes of models is
allowed.

The image feature appearance model mixes both
declarative and statistical knowledge. Hence we can
declaratively define the curvature of some model
primitive as Convex, meaning the internal aspects of this
curve are of a higher image intensity. We can also
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generate population statistics from training examples
which circumscribe the nature of the curvature and
quantify profile characteristics along the curve.
Complex features can be built from more fundamental
objects in the manner suggested by Tsotsos [12]. This
allows models to be built from a base of perceptual (and
model) primitives, in a constrained way along
representational axes, to form fully specified
combinations.

For objects likely to require image segmentation an
image location model is provided for use by the
automatic location system ALS. Rectangular image
regions, or windows, can be defined for all features of
interest. Statistics can be generated not only for the size
(width and height) of these windows, but also for the
absolute and relative positions of their centre points.

Further models describe statistical relationships
between pairs of features, typically cephalometric points
or feature location window centre points. Angular and
distance parameters can be generated from data
gathered for the feature windows or from windows fitted
to previously found features. This relative location
model can be used in either location generation by the
ALS or in constraint propagation (FCS and PCS). A
similar statistical model exists for all aspects of triangles
defined on points of window centres, or cephalometric
points, and is used in constraint propagation (OCS and
CCS).

The Reasoning Cycle

A default blackboard is constructed by calling the
blackboard system and image references are written to
the blackboard when selected. The system keeps a
displayable track of generated windows, and all found,
and rejected features. Task selection causes task frames
to be loaded onto the blackboard. The task
specification system will then create a blackboard task
panel from the list of frames or references, within the
frames, to objects defined within any of the declarative
models. Any frames not used are removed, and any
frames containing slots referencing frames not available
are redefined without those slots. At this stage all
knowledge sources, including the blackboard are fully
initialised and image analysis can commence.

The blackboard control system (MKSC) commences a
hypothesis and test reasoning cycle, calling upon very
general functions in a specified order to interact with the
blackboard. Any one of these general functions can
cause further, more specific reasoning cycles to be
initiated. Objects are selected and predictions, or
hypotheses, are generated for the selected object.
Candidate objects are found, then tested for validity. In
The blackboard can then build a reasoning profile of
what objects and systems have been used, what is left to
be done, what has been done but proved to be
unsuccessful etc. In this way any attempt at finding an
object which has already been unsuccessfully searched

for, can use more exacting knowledge in successive
attempts.
Objects, and current task panel levels, are specified by
the task management system (TMS). An object
becomes active once selected as the blackboard current
object. It remains active until a suitable candidate (s) is
accepted by all constraint systems or until objecting
constraint systems are overridden. Objects are chosen
on the basis of a cost function related to statistical
variance. Higher level objects, eg angles, are attributed
a cost value related to the objects they are defined
upon.

Intelligent Segmentation

An initial implementation of the ISS has been described
elsewhere [2]. The current ISS is much improved in
computational efficiency and in its functionality. The
system now makes no attempt to back chain, but uses
model-directed objective-specific forward chaining,
with an improved graph-based backtracking
mechanism, to find required objects. The rule base
places greater reliance on the interaction between image
parameters, as gathered by image processing tools
within the ISS, and the new format feature appearance
models to control, its actions.The production rules,
within the segmentation knowledge-base, now take
saliency values and a greater wealth of rule syntax is
provided. The image processing and segmentation
operators are similarly improved, with greater reliance
placed on model parameters. The system allows
segment splitting and combination, during
segmentation, in a model-based manner derived from
the Nazif and Levine system.

Segmentation strategy borrows the Recognition and
Identification analogy used in human perception study
[7]. Once the initial selection of binary cues have been
extracted from the source image, they are adapted and
rejected until the set of objects are statistically
recognisable as members same class as the modelled
feature. Identification allows the system to select the
most suitable candidates.

Object Expectation Windows
The automated location system (ALS) is capable of
specifying areas of an image likely to contain an object,
utilising two of the models introduced above within a
declarative knowledge source. This it does in one of two
manners; the method used is dependent upon the
number of features already found.
If less than two image features are found, the system
accesses data defining mean and variance for a
window's centre point, and convolves this with the mean
and variance for window size. The generated window is
written to the blackboard as the expected location area.
However if the current feature is not a member of a
specified subset of features no location for the feature
can, as yet, be given. Typically in such a case, the
blackboard task object would be reselected at a later
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stage in the image analysis, allowing the second mode of
location window generation to be used.
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Figure 2. Location Propagation

Where more than two features have already been
found, the system uses further geometric constraints to
generate areas of intersection between pairs of found
features and the required feature. Where a null
intersection is generated, the system backtracks to
produce the most viable non-null intersection. The
result of this constraint propagation can be convolved
with location window size statistics to produce an
expectation window of use to the rest of the blackboard
system (Figure 2).

Cephalometric Measurements
A relatively straightforward imperative system produces
lines, ratios of distances and angles according to the
specification of the currently selected task panel frame.
Angles can be defined upon pairs of lines, line and point
(or point and line), and three or four points. Displays
allow the user to verify the correct measurement has
taken place.

Constraint Systems
The three constraint systems can only be activated by
finding a candidate, or series of candidate, object(s).
The FCS and PCS systems use similar mechanisms to
verify that a new feature, or point, are statistically
contingent with already known features. An insufficient
fit causes an object to be rejected. Where more than
one candidate is acceptable, the most suitable candidate
can be selected using all available statistics. The third
system (OCS) works in a similar manner for higher
order objects (eg lines, angles) but can have quite
different consequences. If the current object resides
beyond statistical limits, the system can be caused to
reappraise the validity of all found objects.

Initial Results
The AITOOL and multi-knowledge sourced
blackboard system have been implemented in Sun
Common LISP with image processing modules written
in Pascal. Initial results for a system designed to locate
features have been obtained with X-ray images of
varying quality. Figure 3 shows the results of a successful

analysis. The display shows 12 found features, their
expectation windows and 10 fudicial points defined
upon the features.
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Figure 3. Features found with locations.

The modified ISS, used in interactive mode, now
operates with close to 100 per cent reliability. The
automatic location system (ALS) is available as part of
the blackboard system or in a simplified
multi-knowledge (ISS, ALS, FCS, CMS, MSS)
sourced image interpretation system (MKSS) which
finds features in a predefined order, and has no real
task definition knowledge. Results using this system vary
with image quality and the probability levels applied. On
average it performs with about 80% accuracy, but can
run at 100% on good quality images with high contrast
features. An initial implementation of the blackboard
system is running but requires further development,
particularly with regard to the handling of probabilities,
constraint values and image interpretation alternatives.
Some form of truth maintenance system, or
probabilistic belief system is necessary to allow the
generation of the most viable image interpretation.

Discussion
Presently the blackboard system is running in an
incomplete form, but it does drastically improve on the
performance of previous knowledge-based approaches
to automating cephalometric analysis. The best
procedural solution [12] runs at a slightly higher level of
accuracy, but on a narrower range of test images. The
present results were gathered using test images that
included non-aligned images where double, or
incomplete feature stimuli were present, and very poor
quality images where a human observer would have
difficulty in finding the sought feature.
It should be realised that successful image
interpretations are achieved by allowing the system to
consider alternative, competitive interpretations. This
occurs not only at the gross level where alternative sets
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of candidate feature combinations exist, but also where
alternative interpretations of segments are considered.
For instance, it may be possible to generate a set of edge
segments in a particular area of the image when seeking
the forehead contour. These segments are
systematically broken down and combined, using
model-based parameters, to offer the greatest possible
range of segments. The segmentation phases of
recognition, and identification then allow the valid
members of this extended segment set to be selected. At
a higher level, within the blackboard system's constraint
mechanisms, these viable alternative foreheads are
considered not only in terms of how well they fit the
segmentation appearance model but also, on how these
alternatives fit with location models constraining the
juxtaposition of different features within an image.
Similarly a candidate forehead may be preferentially
selected upon evidence related to cephalometric points
defined upon the forehead.

It is possible in low contrast, or poorly aligned images
for segmentation to initially fail for particular contours.
In previous attempts at automating the cephalometric
analysis [9,12] this would lead to an image
interpretation failure. An initial failure to find a feature,
in the present system, causes the selection cost value of
that feature to be increased. This allows other features
to be found in preference to the failed feature. These
found features will then be used in applying greater
constraints to the finding of the failed feature when it is
reselected as the currently required object. Where such
actions still fail, the blackboard system should be able to
activate highly sensitive one-dimensional edge evidence
collectors. A model-based operator based on the dipole
[6] is currently being developed for this purpose.
Evidence gathered in such a fashion, together with the
model's available to the system, should enable the
sought feature to be inferred. It should then be possible
to perform full automatic cephalometric analyses on
even the poorest quality radiographs.

We have chosen cephalometry as our exemplar for the
application of knowledge-based and blackboard
systems to medical image interpretation, but the types of
behaviour displayed by this system should be applicable
to other medical or difficult domains. The use of general
reasoning methods and the implementation of the
system using generic processing should allow the system
to be successful in other complex image interpretation
domains.
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