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Methods are reported for  deriving  polygonal
approximations of connected edges, and for identifying
cues which indicate the presence of cars. Simple
attributes of cue features are stored on the viewsphere,
allowing numerical inversion to recover the viewpoint.
Further features are then grouped with the cue, by
projecting a 3D model into the image.

INTRODUCTION

This paper reports recent work on the use of model-
based methods to identify vehicles in outdoor scenes.
The paper builds on previous work, using an hypothesis-
and-test paradigm consisting of the following main
stages:

(i) Context-independent edge detection, followed
by a local connection to find extended sequences
of points (curves) in the image (after Canny,
1984).

(ii) Decomposion of curves into  polyline
approximations, using a split and merge
algorithm  based on curvature extrema
(Angelikaki, 1988).

(iii) Identification of model-dependent "cues" in the
polyline database associated with given features
of the model (Sullivan et al, 1987).

@iv) 2-D reasoning to group a labelled cue with
other fragments in the polyline database
(Boddington et al, 1989).

(v) Use of viewpoint reasoning to identify the
view-patch from which the extended cue set is
visible (Rydz et al, 1987; Worrall et al, 1989)

(vi) Invertion of the view-point, using an iterative
technique (Worrall et al, 1987).

(vii)Refinement and verification the view-point
estimate, by iconic evaluaton (Brisdon et al,
1988)

Stages (i-iii) are data-driven, and make no reference to
the internal representation of the car, except for the
choice of car-specific cues (quadrilateral, S- and U-
shapes). Stages (iv-vii) involve a hypothesis-driven
search process which is managed by means of a truth
maintenance system (the ATMS) to avoid excessive re-
evaluation of constraints (Boddington et al, 1990).

Currently, the weakest stages of the process are
probably (ii-iv), and previous demonstrations have been
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forced to use manual interaction at these stages, in all
but the simplest of images (see Boddington et al, 1990).

We report here improvements to the cue-finding stages
(steps ii & iii) and new work using pre-compiled tables
of the view-dependency of features to estimate the
viewpoint, thus allowing image features to be grouped
by means of 3-D reasoning.

CUE EXTRACTION

The edgelets produced by the Canny edge detector are
first thresholded to reduce weak clutter. Beginning from
an edgelet, we track along connected neighbours to get a
list of edgelets. If one edgelet has more than two
neighbours, we check all possible extensions of the
curve, and segment the curves on a largest-first basis,
breaking the others to form separate curves. This
removes small spurs effectively.

1. Linear Approximation

Teh and Chin[8] surveyed several methods for finding
dominant points on a curve suitable for creating a linear
approximation of the curve, and suggested their own.
All but one algorithm surveyed in the paper require
explicit input parameters. These parameters usually
control the region of support for the measurement of
local properties (e.g., curvature) at each point on the
curve and so serve to measure the changes between the
original curve and its linear approximation. The
algorithm must be tuned to the level of detail
represented by the digital curve. Generally speaking, it is
difficult to find a set of parameters suitable for an
image that consists of multiple size features.

Teh and Chin suggested their own dominant-point
finding algorithm, which requires no input parameters.
They therefore claimed that the algorithm is suitable for
different scales of curves. We have checked their method
in our images and found that it favours small curves.
For larger curves, say with more than 100 edgelets, it
often produces too many dominant points. The
approximation of the curve is good but the over-
segmentation reduces its usefulness for further
processing. We have therefore developed methods better
suited to finding salient features, based on the chain code
(Freeman, 1974).

The connected curve is first divided into short straight
lines comprising compact sequences of horizontal,
vertical and diagonal vectors. Further grouping deletes
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repeating patterns in the Freeman chain. For example, if
pattern 0 1, appears repeatedly, 0 1 01 01 0 1, we can
group the corresponding edgelets into a straight line
sector. Only 8 such patterns, 01, 12, 23, 34, 45, 56, 67
and 70 are used, together with their equivalent reversed
forms.

This stage results in over-segmented curves. The straight
line sectors can be combined further subject to two
constraints: the length of a line sector, and the angle
between adjacent lines. Since the main object of the
present work is to find highly salient features in the
image, we are uninterested in lines shorter than one
tenth of the length of the longest one in a curve. Let
curve C be approximated by straight lines {1;, 1, ..., 1},
among which |_is the longest. If there is a line 1, whose

length is shorter than one tenth of that of 1, we can
check the angles 6, between L ;and 1, and 6, ,
and L, and combine L, with L , if 6, < 6,,,, and combine
L with L, otherwise. Angles between adjacent lines can

be treated similarly. If the angle between two lines is
smaller than a certain threshold, those two lines can be
combined into one.

Original Shape

between 1i

Modified Shape Required Shape

New line

Figure 1. Errors introduced by line merging

A common method to reduce further the number of
points on the curve is to measure the distance from a
point to the line connecting its two neighbours. If this
distance is under some threshold, the point can be
deleted from the curve. This sometimes fail badly as
shown in Fig. 1. We seek compact feature, such as the
trapezium (Fig.1, right) and these are not explicitly
favoured by the distance algorithm. Instead, we have
developed a method based on an area measurement.

Figure 2. Area-based merge algorithm

The areas of convex portions of a curve can be used to
measure the difference between the curve and its linear
approximation. If a curve is not convex we break it into

sub-curves which are convex. Let the area of curve C be
A (if it is not closed, then connect the two ends points).
Each vertex on C defines a triangle with its immediate
neighbours, as shown in Fig.2. We select the smallest
triangle and remove the corresponding vertex if the area
of the triangle is less than a certain percentage (say 5%)
of A. This is iterated until no further removals are
possible. This method is very effective at removing
small protuberances such as shown in Fig.1.

2. Classification

The polylines are searched to find quadrilaterals, U-
shape curves, and S-shape curves to serve as cue features.
On the basis of experience with common feature
extractors, we believe that the most salient features for
recognizing a car are edges at the windows, hatchback,
and bonnet. These retain identifiable shapes under a range
of view-points and therefore can be used as "focus
features” to make hypotheses about the car.

For each linear approximation L of a curve C, we see if
it matches with one of the models of S-shape curve, U-
shape curve, or quadrilateral. These models are expressed
by sets of rules in a rulebase. When L is matched, we
classify C into that category of features. The rules for a
quadrilateral are listed below; those for an S-shape and
U-shape are similar.

A polyline P is reduced to a quadrilateral by line
merging under the following constraints:

1. P is closed, or the distance between the two end

points of the curve is less than one fifth of the
length of the longest line segment in P.

2. Four of the exterior angles between successive
lines must be significantly larger than other
angles (5 times as large as others) after the line
merging process. The sum of the four largest
angles is within the range 320° to 400°.

3. The line segments are merged between the four
largest angles into 4 line segments. The longest
grouped line segment must not be longer than 5
times the length of the shortest one.

4., At least one pair of the non-adjacent line
segments is parallel, as defined by the overlap,
distance and orientation of the line segments.

3. Hypothesis Generation

Salient features are used as "focus features" or "seed
features" to make hypotheses about the car. In the
system so far, we use only quadrilateral as seed feature.
The others are used to support the hypotheses.
Correspondingly, we use car windows as model features
to make the match. To limit the search space we assume

that the car is upright and the camera axis is between 0°
to 45° from the ground.

Let P be the set of all the quadrilaterals extracted from
the image. For every quadrilateral p, we can associate

any of the six windows W={w,, W,, W4, W,, Ws, W} Of
the car and thus generate a hypothesis
Hij= {pi’wj}



This in turn can be used to make predictions about the
car by using the quantitative model discussed in the
following section.

To reduce the number of hypotheses, we define a
function f: H->I where H is the set of hypotheses,
H=P*W. For a quadrilateral p, we define a subset F, of

image features which includes all the image features in a
small area centered at p,. The area is determined by the

vertical extent in the image of p, since this changes
little in most of the view-points. For window w; we
define a subset Wj of model features. When we find one
feature in P, matching one feature in Wj we increase the
value of f(Hij) by one.

A hypothesis Hij is said to be a good hypothesis (GH) if
f(l-Iij) is greater than a certain threshold (say 5). The

GHs are used as input to the quantitative model to give
predictions of the car. The number of GHs is usually
smaller than 5.

POSE ESTIMATION

We estimate the view direction using pre-computed maps
of single features, represented on the view sphere, in a
way similar to Goad (1987). The cue features delivered
by the above are trapezoids, and the following relational
two attributes are computed.

Let line L; be the lower of the two parallel lines and
line L, be the line to its left. We calculate

* r-- the ratio of length between L, and L,

* 0-- the angle between L, and L,.

The feature attributes are as shown in Fig. 3.
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Figure 3. Image Feature Attributes

In an object-centred coordinate system, the camera
position is specified by 3 translational parameters and 3
rotational parameters. We use the spherical-polar
representation with two angles © and ¢ and one distance
measurement r for the position of the camera nodal point
in the object frame. A camera coordinate system is then
established with its origin at the nodal point and its axis
Y, intercept the object centre. The camera rotations are

represented by a roll Y (around camera axis Y), and
tit, y, . (around axis X ), pan Y,. (around axis Z).
Therefore, in our new representation the parameters are:

(1) R -- spherical distance.
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(2) 6 -- angle of the camera axis formed with the Z
axis of the object frame.

3

¢-- angle of the projection of camera axis on the
X-Y plane with X axis.

@
)
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Yy~ roll angle of the camera.
¥,--tilt angle of the camera.

¥,.--pan angle of the camera.
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Figure 4. Coordinate Systems and Symbols

The position of the cue in the image constrains two of
the translation components (in X_ and Z)). To simplify

the problem, the Y _ axis initially assumed to intercept

the centre of the cue. The residual 4D problem is then
decomposed into the following steps.

(1) Estimate view direction as a point on the
viewsphere.

(2) Estimate the viewing distance.

(3) Estimate the roll angle.

(4) Relocate the Y_ axis to intercept the model

centre and re-estimate the pan and tilt angles
and the translationsin X and Z_.

1. View direction from shape attributes

Under the above assumptions, the determination of view
direction parameters is decoupled from the other
parameters. The feature attributes defined in Figure 3 are
functions of the view direction as shown in Figure 4.

o = (e, ¢) r=g(6, ¢

The recovery of view direction from given feature
attributes requires inverting the functions f and g. A
numerical solution is used. We represent the functions f
and g numerically as two tables of sample points with

small intervals for © and ¢. The inversion operation is
carried out in table-look-up fashion. Sub-interval
accuracy of inversion is achieved through linear
interpolation of the functions f and g. These functions
are tabulated for each object feature, in this report, the



windows.

A coarse view direction estimation is produced by
looking up the corresponding table for the feature under
investigation. Further on, this estimation is refined to
sub-interval accuracy by using linear interpolation of the
table in the immediate neighbourhood of the coarse view
estimate.

In building the view-shape table for the car recognition

problem, 6 is restricted to the range of 45°-90°
(implying that the car is not viewed from high above nor
from below.) This is not essential to the approach, but a
simplification for efficiency. The range of ¢ in which
any feature is visible is 180 degrees. We partition it into
two parts, since the near symmetry of the functions f
and g means that a table covering 180 degree of
longitude is ambiguous.

2. Estimation of View Distance (R)

Under the assumption that the camera axis is pointing
towards the object centre, the distance R can be
determined by size-depth scaling.

Let u, v be the position of a image point corresponding
to (Xq Y¢o Zo) in the camera centred system onto the
image plane, f be the focal length. u and v are in pixels.
We have

u=ch!Yc
V= ch/YC.

In building the table, Yc= Ry, is used. Suppose, point
(0.09 Y ch) and point (Xcz, Yo Z.,) are the two
end points of a line in consideration. The length the
projection of the line is,

= 2 2112
LENy, = /Ry [Xgy - X )™ HZg - Z )]
When R changes with camera axis kept pointing

towards the object centre. X ,, Z, and X ,, Z, will
not change. This gives,

LEN=f/R [(xcl - xc2)2+(zc1 - Zc2)2] L

for the length of the same line projection. Therefore, the
distance between the camera and the object centre can be
estimated by the following,

R=Ry, *LEN/LEN,,
3. Calculation the Roll Angle (yyc)

Having estimated the view direction (8 and ¢) the roll
angle can be easily computed as the angle needed to bring
line 1 from image parallel to its counterpart in the
predicted template.

4. Correction for pan(yxc) and tilt(yzc)

We initially assumed that the displacement of the cue
feature in the image was only due to the camera pan and
tilt. This neglects any displacement of the feature with
respect to the centre of the model. Having established an
estimate of O, ¢, R and the roll angle the initial
assumption can be corrected by computing the pan and

tilt angles which make the cue feature coincide with the
predicted model feature.

5. Error Assessment by Simulation

The error of estimation has been assessed by simulation.
The image features are generated from the model with
given view directions (6 and ¢) and distance, together
with translation of Z, X . The difference between the

given view parameters and the estimated parameters is
the error. The typical error is less than half of the
sampling interval of 6 or ¢. The error of r is less than
5%.

The super-imposed estimated template and the
simulation input appear to match well without
significant perceptible error.

MODEL BASED GROUPING

Figure 5 shows an original image which is a typical
outdoor scene including several cars and other irrelevant
objects. Figure 6 shows the result of the Canny edge
detector. Figure 7 shows the polyline descriptions of the
main connected curves, and figure 8 shows the
quadrilaterals detected in it which are used as seed cues.

Figure 9 shows the polylines around one seed cue in
greater detail, with the seed cue emphasised. A single
quadrilateral is a candidate for any one of 6 windows in
the model, and each window may lead to several
solutions of the viewsphere functions (see above).
Figure 10 shows the solution obtained near the visibly
correct position, and figure 12 shows an incorrect
solution, corresponding to a mirror confusion in the
feature attributes.

The projected instances of the model in figures 10 & 12
are used to initiate a search for fragments of lines in the
polyline database, which closely match the model
features. The match seeks lines that are close and
parallel (according to simple criteria). Figures 11 and
13 show the lines identified in the two cases. Each of
the lines grouped by model-based reasoning is associated
with known model lines, which can be wused for
subsequent view-point inversion (Lowe, 1987; Worrall
et al, 1988).

CONCLUSION

Improvements to an existing model-based system for
recognising cars have been presented. Data-driven feature
analysis stages have been developed which derive an
accurate description of the most conspicuous edges in the
image. Cue extraction rules are able to derive
application-dependent feature groups indicative of cars,
which are robust against changes in viewpoint.

It has also been shown that the viewpoint can be
estimated with fair accuracy from simple polyhedral
cues, and that this allows 3-D model-based reasoning to
be used to group additional fragmentary evidence from
the line database. The additional evidence may in turn be
used to compute the pose more accurately, or to
discriminate between likely and unlikely hypotheses for
full evaluation.
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