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The ability to make three-dimensional measurements of
surface topography is important to the control of quality in the
fabrication of IC wafers . We describe a technique using shape
from shading to produce a dense depth map from ICs imaged in
the scanning electron microscope. The method minimises error
terms to ensure the resultant surface is everywhere continuous
and accurately explains the observed image intensities. We
describe how this method is extended when stereo images are
available and how the extra information in stereo could be used
to derive properties of the reflectance function.

A great deal of effort is expended by the manufacturers of
integrated circuits (ICs) in judging the quality and
acceptability of device interconnect metallization on
integrated circuit wafers or dice. Typically they are
interested in measuring parameters such as the height of
tracks, passivation steps, contact windows and cross-overs
of metallization layers relative to the substrate, the depth
of pits in the substrate and the thickness of the glassivation
layer. Due to the size of the structures involved,
components are normally tested non-destructively using a
scanning electron microscope (SEM). It is possible to
extract some of the required quantitative information
relatively easily from SEM images but heights relative to
the substrate are difficult to measure. We are attempting
to produce accurate measurements of three-dimensional
topography from stereo images taken by SEM. An
important characteristic of the problem is the variability in
material properties and in imaging conditions and the
consequent difficulty in modelling the imaging process.

The SEM produces images that are highly magnified
representations of the sample, with surface shading similar
to that observed in scenes illuminated by directional light
(Figure 1). As a method of extracting three-dimensional
information from such images, shape from shading [ 1,2]
offers the derivation of a dense depth map, which is
particularly useful when trying to make volumetric
measurements. Other methods commonly adopted for the
extraction of three-dimensional information rely on being
able to match features in a stereo pair of images (the
correspondence problem). Although it is possible to
obtain stereo pairs of SEM images, either by tilting the
microscope stage or by deflecting the electron beam, the
surfaces of interest in this application are sufficiently
featureless to make the approach unattractive.
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Figure 1. SEM image of an integrated circuit

This paper describes our approach to recovering height
information from SEM images of ICs. Our first objective
hasbeen to exploit fully the information present in a single
image. This involves making assumptions about the
relationship between surface orientation and observed
intensity, though it is possible to obtain an approximation
to this reflectance function by making use of calibration
objects. The iterative scheme we have adopted converges
rapidly to to a reasonable estimate of the height map which
it then adjusts directly, to achieve a least-square
explanation of the observed image intensities. In order to
achieve this we have developed a simple four-pass method
of generating a height map from possibly inconsistent maps
of surface gradient. Our second objective has been to
exploit the additional information available from a stereo
pair of images, using binocular shape from shading. The
scheme developed for the monocular case has been
extended to deal with stereo by casting the left and right
image observations into a Cyclopean co-ordinate frame in
which a single height map is constructed. This process
requires an initial estimate of the height map, which we
obtain using the monocular method. The additional
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and can resolve ambiguities present in the monocular case.
We believe there is also the potential to recover
information about the reflectance function though this
cannot yet be demonstrated.

PREVIOUS WORK

In general, existing algorithms for extracting the shape of
an object using shape from shading rely on knowing the
reflectance properties of the object a priori (but see [3])
expressed as a reflectance function or map. Such a function
makes explicit the relationship between surface
orientation and brightness, encoding information about
the surface reflectance properties and light-source
distribution. Most existing methods tend to make the
simplifying assumption that the object exhibits Lambertian
properties. This does not hold for SEM images.

The problem of obtaining the shape of an object from its
shading pattern is fundamentally difficult because there
are two degrees of freedom in surface orientation at each
picture point but only one brightness measurement, thus
we have one equation in two unknowns at each point in the
image. The problem becomes tractable if a number of
simplifying assumptions are made concerning the object
being reconstructed and the lighting and viewing
conditions under which the images were taken. Typical
assumptions include the image being acquired under
orthographic projection and that the underlying surface is
everywhere continuous. Some methods have tended to
impose unrealistic constraints on the resulting surface
assuming, for example, that it is smooth [4 ], locally
spherical [ 5 ] or hyperbolic [ 6 |; these lead to inaccurate
reconstructions of the surface. In particular shape from
shading methods that solely penalise departure from
smoothness will cause any non-planar surface to incur a
penalty and thus tend to produce results that are flatter
than the actual surface. More recently the notion of the
resultant surface being integrable’ has become accepted
as a sufficient condition [ 8 . Most methods work directly
with surface gradients, then recover height in a separate
step [ 4 ] though methods that recover height directly have
been reported recently [9,2].

Although most papers on shape from shading only address
the monocular case [ 4, 10, 2 ] there has been some work
published on obtaining shape from shading using stereo
images, although they have tended to be concerned with
augmenting the sparse height information available by
matching stereo pairs [11,12], by using the extra
information available as shading to “fill in the gaps” of
feature based stereo - requiring the correspondence
problem to be solved.

MONOCULAR SHAPE FROM SHADING

We have derived an iterative scheme for solving the shape
from shading problem whilst enforcing the integrability of
the recovered surface by working directly with the height
map. The method requires a good initial estimate of the
height map, which we obtain using a rapidly converging but
less accurate technique.

t ie. the surface is twice differentiable everywhere

Iterative Recovery of Height Map

We use the calculus of variations [ 15 ] to derive Euler
equations that provide the necessary conditions for the
minimisation of several cost functions. Given the image
E(x,y) and a reflectance function R(p,q), where p and g are
the surface gradient in x and y respectively. We are
interested in finding the surface z(x,y) which minimises,
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the error, integrated over the image, between the observed
intensities and those predicted using the reflectance map.
We could minimise this integral in p and g but the result
would not necessarily correspond to a continuous surface.
Thus we need to find the best-fit surface z which has
partial derivatives z and z, that are closest to matching the
computed components of the gradient (p and gq) by
minimising

[ Jn (z:-p)* + (z,- q)dxdy

Combining this integrability constraint with the intensity
constraint, we obtain

I L (E(ty)-R@,q)} + u((z-p) + (z,-q)*)axdy

where | is a Lagrangian multiplier. Finding the minimum
of this integral for values of p and g is a simple calculus
problem (not involving the calculus of variations) since
there are no partial derivatives of p and g in the function.
Differentiating with respect to p and g and setting equal to
zero results in

1 a
P=z+ ;(E(x!y)_R(p!Q)) a_pR(p’q) (1)

g=1z+ icﬁ(x. y)-R(, q»-aiqﬂcp, 9 @)

To find the minimum with respect to z we see that z does
not appear directly in (E(x, y) — R(p, q)), so we just need to
minimise

J L (z:-p)* + (z,-q)oxdy

This expression is a functional of the form

JJF(z,zx,z,)dxdy, and therefore has a minimum that

satisfies the corresponding Euler equation,

d d
Fz—_Fz —a—sz), = 0
where

F = (z-p)* + (z-9)*
hence,

a d
E(Zx-P) + a_y(zy—‘-?) =0

is a necessary condition for a minimum in the functional.
Rearranging we get
g d
ve=2,94 (3
ax  dy
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where
32 32
812 yz

We can to derive an iterative scheme to solve equation (3),
by using finite-difference methods to approximate the

derivatives. The discrete approximation to V? (the
Laplacian operator) is

i |
Ve = e_g((fi.;'ﬂ + firry + fij1 + fir) - 4i)

thus,

v2

4 -
Vi = = ii=£ii)
where e is the inter-pixel spacing, and the local average f;;
is given by
= 1
fii = gGis1 + firry + fir1 + fier))
We can thus rewrite equation (3) in its discrete form as
4 _
?(zi;'—zi.f) =pctqy

Making z; the subject of the formula results in the
iterative scheme,

2
1 €
4}l = Z‘j—?(hf,;‘ + ) “4)
where
_ 1
Zij = Z(ZEJ+1 + Zarg+ Zipr 21y
and
1 1
hij = E(PHU'P;‘—U) and v;j = 5(q;,;+1—61u~1)

are the discrete approximations to epy, and egy.

Similarly, given z(x,y), an approximation to the surface, we
can change the gradients in x and y to minimise any
difference between the observed intensities and those
predicted by the current height map, by expressing
equations (1) and (2) in iterative form

i 1 OR
Pl + #(E(x,y)—R(p.q)) o (5)

and

1 R

¢ = 2 + (B ) -Rp.a) S (©6)
u oq

where all values on the right hand side are taken from the
kth iteration. This iterative scheme will converge to the
correct solution, if one exists (ie. if there isa E = R(p,q)).
On non-ideal data however, it will (in general) not reach a
stable solution unless it has a good approximation to the
height map from which to start. In addition, the
convergence is slow since the expression that modifies the
height map is dependent on the second derivative of the
surface, and the feed back from the height map to the
gradient maps does not constrain the gradients to describe
physical surfaces.

Horn’s approach is to introduce a steadily reducing
smoothness term [ 14 ] which encourages the solution to
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converge towards a coherent surface. This does not,
however, address the problem of the slow convergence of
the height map. Since we are interested in using the height
map at an early stage for computing the disparity in
binocular images we have also considered other schemes.

Obtaining an Initial Height Map

We are interested then in finding a method for obtaining a
good approximation to the underlying surface from which
to begin using the exact shape from shading scheme
described above. Earlier, Horn described a scheme using
an integrability constraint in the gradient maps that was
capable of converging rapidly to an answer near the
correct solution even when given a poor initial
approximation to the surface [ 2 ].

The integrability constraint enforced in the previous
scheme ensures that the reconstructed surface is twice
differentiable everywhere (written C2). If the surface, z, is
C2 then the order of differentiation in the two dimensions
over which it is defined makes no difference to the result,
ie.,
0%z
dydx

8%z
dxdy

Rather than enforcing integrability, we can measure the
departure from this condition as,

[ [ @-apay
combining this with the intensity constraint we get,

[ [ (@)~ Ro,0) + 4o, - gprasdy

Now, since this functional is in the form,

Ip,q) = J L F(x,y, P, 4, Pxs Py G Gy)dxdy

its extrema can be expressed as the solution of the
corresponding Euler equations,

=

a

Fp-apr; pe b
a . 9

Fy= e a5y Foy = 0

Substituting the above functional for F and substituting
into the Euler equations gives

- 2E(xy)- R, q))%Rco, q)—%(u(py—qx)) -0

- 2E@) - Rp.0) 5 Re,0) -5 (- 240, ) = 0

which can be simplified to read
(E-R)R, + Upy-qy) =0 (7)
(E_R)Rq " A(Q.u_pyx) =0 (8)

where again subscripts denote the relevant partial

differentiation and the appropriate arguments (x, y) and
(», q) are assumed for E and R.

We now wish to devise an iterative scheme to solve this pair
of equations. We can use finite-difference methods to
approximate the differenlials,

2
7= @l + i0-2%)



Which we can rewrite as

ay2 - ?U'" )
%(fi.fn + fiz-1)

where f_; i=
is the vertical local average of f; ;.

Now, taking equation (7) as the example, rearranging and
substituting pyy gives,

2 1
ey~ ("g{(p-_P)) = I(E_R)Rp
and therefore
e e
P=P-7y+ 57 (E-RR,
Using the discrete approximation,
62q
axay

We have the iterative scheme,

P = Fodd + S E-RGGORGED) ©)

where

1
= 4_62(‘1"+1J+1 + Gi-1j-1-Gi-1j+1-qi+1j-1)

_ 1
Pij = E(ps.;'n + pij-1) and

_ 1
Gij = 7@i+1j+1 + di-1/1- Gictj41 - Giv 1/1)

are the vertical average of p and an estimate of the cross
derivative (times €2) of g respectively.

Equation (8) yields a similar iterative scheme for g.

This method does not enforce integrability of the resultant
surface, but merely treats it as an error term to be
minimised together with the intensity difference. Its
ability to start from a poor approximation to the surface
and its rapid convergence make it suitable for deriving an
initial surface from which to start iterating the exact
scheme.

Full Monocular Method

We have combined the two methods described above to
produce a shape from shading scheme which converges
rapidly to an accurate estimate of height starting from a set
of p, g and z maps that do not represent a surface near the
correct answer.

We use the method of equation (9) to build p and g maps in
which departures from integrability are penalised. Once
this method has converged we cast the gradient values onto
a coherent physical surface by scanning through the
gradient maps from each corner of the reconstructed
region, at each point producing a surface height that best
explains the local gradients whilst imposing integrability.
Using the notation p and q as before, the height at a point
(xy) is given in terms of the scan direction by,

Lol =) + mp=m,y)

Zmi(X%,y) = ( 3

n) + nq(x,y-n)
8

z,,,,,(x, 3

2xy) = zu(xy) + z.u(xy) + zi4(5y) + z.1.4(x,y)

where m =1, n=-41denote the direction of the scan in x
and y respectively.

Once the initial height map has been constructed we
continue the method of equation (9), except that now we
recalculate the p and g maps from z at every iteration. This
will not converge to the correct solution but ensures that
the solution maintains convergence during the initial
stages of introducing feedback from the height map. Once
stable convergence has been re-established the method of
equations (4), (5) and (6) is applied. In practice, we do not
make this final change instantaneously but rather take a
weighted combination of the two methods to achieve a
graceful transition.

BINOCULAR SHAPE FROM SHADING

We obtain shape from binocular shading from stereo
images by building the height and orientation maps with
reference to a global co-ordinate system (GCS) based
upon the Cyclopean view. The monocular shape from
shading algorithm is extended to use the shading
information available in both images. The extension of the
algorithm involves transforming image points from the
co-ordinate systems of the left and right eye views (LCS
and RCS respectively) to the GCS, using information from
the height map. The nature of the iteration is such that the
correspondence improves as the height map approaches
the correct solution. The error function is easily extended
to take account of the extra information available.

If we make the simplifying assumption of oblique
projection, then the mapping from GCS to LCS and RCS
becomes a simple rotation. Using no subscript to denote
the GCS, the subscript “L” for the LCS and the subscript
“R” for the RCS and extending the scheme described
above,

By 7 i(EL Rpr,qu)) T O L)

1 dR(pr,
z. + —(Er- R(pg, qR))(p—RQR)
K p

A similar equation holds for g; the equation in z remains
unchanged.

As with the exact monocular method the scheme requires
a reasonably good starting approximation. We obtain this
by computing an initial monocular solution.

RESULTS

Monocular Method

The monocular method has been applied to both
synthesised images and real SEM images. In both cases
measurements made from calibration objects, viewed in
the SEM,were used to estimate the reflectance function.
Cylinders and spheres were used as calibration objects
since surface orientation could be inferred very simply
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Figure 2. Synthesized SEM image of a cylinder

Figure 5. Rendered surface reconstructed by
binocular method
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Figure 3. Height profile computed from Figure 2

from radial position in the projected image. The effects of
noise were minimised by fitting polynomial surfaces
through the measured data. Synthetic images of cylinders
were generated from the reflectance function and used to
test the methodology. Figure 2 shows one such test image
of a 64 pixel radius cylinder. Figure 3 shows the calculated
height profile, at the position indicated in Figure 2, after a
total of 120 iterations (Phase 1= 60, Phase 2 =60), starting
from a plane surface. The solution was stable. The dashed
line shows a least-square circle fitted to the data,
indicating a calculated diameter of 65 pixels.

Figure 4 shows a height profile of the surface
reconstructed from the IC image in Figure 1 using the
same procedure as above; again the solution was stable.
No absolute height data is available for comparison but the
profile appears qualitatively correct and quantitatively
plausible.

Figure 4. Height profile computed from Figure 1

Binocular Method

The binocular method has only been applied to synthetic
data so far but we hope to present results obtained for real
SEM images, at BMVC 90. Synthetic images of cylinders
were generated for 4 3° beam tilt. The monocular
method was used to provide an initial estimate of the
height map as described above. The binocular method
converged to a stable solution after about 20 iterations. A
rendered illustration of the calculated surface is shown in
Figure 5.

DISCUSSION

We have shown that it is possible to reconstruct plausible
height maps from monocular SEM images of ICs, using a
method that converges in tens of iterations starting from a
planar surface. We have shown, using synthetic data, that
the method can be successfully extended to deal with



binocular images. We are currently undertaking an
experimental determination of the accuracy of both
methods, using real SEM images of calibration objects; the
results with synthetic images indicate that, given a good
estimate of the reflectance map, it is possible to achieve
accuracies of a few per cent in height measurement. We
have pointed out that it is not necessarily practical to
obtain a prior estimate of the reflectance map and we
intend to further investigate the possibility of using the
redundancy present in binocular shaded images to recover
the reflectance map on-line. Once a reasonably stable
solution for the height map has been reached, using an
initial approximation to the reflectance map, we intend to
modify the iterative scheme to allow R(p,q) to be updated
to improve agreement between observed and predicted
intensities. Stability will be maintained by applying a very
strong smoothness constraint in the reflectance map.

Further improvements in speed may be obtainable using
multi-grid methods though previous attempts to apply
these techniques to shape from shading have achieved only
limited success [ 13 ].

Although many of the surfaces of interest in this
application are smoothly varying there are also localised
topographical features which could be used for
feature-based stereo and it seems likely that a practical
scheme for extracting height from SEM images would also
need to incorporate such methods.
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