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We introduce adaptive multi-scale filtering, a general
method for deriving shape from texture under perspec-
tive projection without recourse to prior segmentation of
the image into geometric texture elements (texels), and
without any form of thresholding of filtered images.

If texels on a given surface can be identified in an im-
age then the orientation of that surface can be obtained
[1]. Unfortunately there is no known procedure for iden-
tifying texels for arbitrary textures. Even if the size and
shape of texels on the surface is invariant with regard
to position, perspective projection ensures that the size
and shape of the corresponding image texels will vary by
orders of magnitude.

Commencing with an initial set, FQ, of identical im-
age filters, iterative filtering derives an ordered set, FN,
which contains a unique filter for each image position.
Each element of Fjv is tuned to the three-dimensional
structure of the surface; that is, each filter projects to
an identical shape on the surface. Thus image texels of
various sizes, but associated with a single spatial scale
on the surface, can be identified in different parts of the
image. When combined with a conventional shape from
texture method Fff provides accurate estimates of surface
orientation. Results for planar surfaces are presented.

The problem of shape from texture necessarily involves
establishing a correspondence between similar surface
entities and their counterparts in different parts of the
image. These image entities will vary in orientation and
scale as a function of surface orientation and image po-
sition. Thus the problem of setting up such a correspon-
dence and the problem of estimating surface orientation
are inextricably linked.

Earlier workers have underestimated, or ignored, the
problem of scale involved establishing a surface-image
correspondence. Kanatani and Chou [2] suggest sev-
eral schemes for overcoming the problem of "resolution
threshold and sub-texture", but implemented none, and
admit to potential problems. Other workers [1] restrict
analysis to synthetic images that can be segmented into
geometric texels. Still others [3] restrict analysis to im-
ages of surfaces which either have a population of high-
contrast surface edges that can be detected with sophis-

ticated filtering techniques, and/or to surfaces with rel-
atively low slant/focal length ratio (see [4]), thereby fa-
cilitating detection of image objects. Only Blostein and
Ahuja [5] have explicitly attempted to address the prob-
lem of scale, for the case of approximately circular image
texels.

Defining Texels: Conventionally a texel is deemed to be a
pattern element on a surface. However, surface textures
with no texels (e.g. wood grain), and textures that do
not produce identifiable image texels (e.g. grass), are
capable of providing measurable image gradients, which
can then be used to estimate surface orientation. In
order to make use of textures such as grass and wood
grain the conventional notion of texel can be extended
beyond patterned, or geometric, texels to include any
type of image object that can be used to infer surface
orientation.

The problem then, is not only how to identify texels in
an image, but how to construct a generic definition of
"amount of texture" that is sufficiently robust as to al-
low analysis of images of arbitrary textures. An example
of one such definition was given in [3] who defined texture
in terms of "line length". Line length provides a simple
index of "amount of texture" for both grass and wood
textures. The "amount of texture" can still be measured
by line length, as detected via the use of a band-pass fil-
ter, even though no geometric texels can be identified
on the surface. The output of such a filter may reflect
activity at spatial frequencies much lower than that as-
sociated with a single surface texel. The resultant image
lines are analagous to those seen when looking a page of
print at a distance; the form of such lines is determined
by the arrangement of text lines and paragraphs on the
page, and has little to do with the shape of individual
characters. In this case lines in the image do not have
a meaningful interpretation in terms of individual sur-
face texels (characters), but (provided these image lines
are associated with a single type of surface object) can
nevertheless be used to estimate the orientation of the
textured surface.

The Problem of Scale: A line consists of a series of edges,
and each of these edges can be associated with a zero-
crossing in the second spatial derivative of a small band
of spatial frequencies of the image luminance function.
Thus the process of identifying an edge in the image
depends not only on the variation in image grey level,
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but also on the scale at which the image is filtered to
detect edges.

It follows that, in practice, the definition of surface tex-
ture in terms of image "line length" is actually a defini-
tion that is specified in terms of those image line lengths
which are associated with a small band of spatial fre-
quencies on the surface. For the purpose of recovering
surface orientation, it doesn't matter which band of spa-
tial frequencies is chosen, provided surface texels (e.g.
edges) which are associated with this band of spatial
frequencies on the surface can be identified in different
parts of the image. ('Shape from texture' methods utilise
image data that are assumed to be derived from a single
small band of spatial frequencies on the surface).

Even if we restrict our definition of texel to edges, the
problem of identifying image edges that correspond to
a single small band of spatial frequencies on the surface
has to be addressed. To return briefly to the printed
page analogy given above, it doesn't matter whether
edges identified in the image correspond to text lines,
paragraphs or even individual characters, provided all
of the image lines are associated with only one type of
surface object. Use of a fixed sized image filter would
result in edges associated with different spatial scales on
the surface being detected in different parts of the im-
age. Therefore, conventional shape from texture meth-
ods [1, 2, 3] will be tend to be inaccurate for surfaces with
large values of slant, where the variation (due to projec-
tion) of image texel size and orientation across the image
is large.

ADAPTIVE MULTI-SCALE FILTER-
ING

Adaptive multi-scale filtering is a method for computing
an ordered set, Fpr, of filters (one for each image posi-
tion) such that each filter projects to an identical cir-
cle on the imaged surface. Convolving each image point
only with its corresponding filter in FN is approximately
equivalent to filtering the imaged surface with a single,
fixed-sized filter. The resultant image data is therefore
derived from a small bandwidth of spatial frequencies
on the surface; this type of data is ideal for 'shape from
texure' methods. (Indeed, the set Fjv actually implies a
particular surface, see Parallel Multi-Scale Filtering be-
low ).

Initially an image of a textured surface is convolved using
identical circular (difference of Gaussian) filters of the
set FQ. Image edges are obtained from the unthresholded
zero-crossings in the filtered image. These edges can then
be used to provide an estimate of the surface orientation,
(T = (p, q) = {-dZ/dX, -dZ/dY,)). This estimate can
be obtained by one of three 'shape from texture' methods
described in [2, 3, 4]. This initial estimate, Ti, will be
inaccurate because 'shape from texture' methods rely on
the assumption that objects detected in a given image
correspond to a set of similar surface objects. Such a set
is unlikely to be realised using the identical filters of FQ.

Using this initial estimate of surface orientation, Ti, a
new set of filters, F\, is constructed. The set Fi consists
of filters, one for each point in the image, such that the

size and orientation of each filter maps to an identical cir-
cle on the estimated surface. The rate of change of size
and orientation of filters in i*\ which are used through-
out the image is determined by Ti (see below). Next,
the image is convolved with the filters in F\. That is,
each image point is filtered with its corresponding unique
filter from F\. The set of edges resulting from this con-
volution is used to re-estimate T(= T2), from which a
new ordered set of filters, Ft can be computed. This
procedure is repeated, and has been found to converge
in most cases (see Results). The result is a set of image
filters, Fff, that will detect all and only events from a
particular spatial scale on the surface. As an example,
Figure 2 depicts a textured surface, and Figure 1 depicts
the theoretical shape of filters in F^.

Adaptive multi-scale filtering has thus far been imple-
mented for texels that are defined as edges on a planar
surface. However, the method could be implemented for
other types of texel (e.g. lines, corners, geometric tex-
els), and for non-planar surfaces.

Calculating the Parameters of an Image
Filter

We require that set of image filters which would be ob-
tained by projecting a set of filters from an estimated
surface into the image.

Consider a small circular filter on a non-fronto-parallel
surface. This circular surface filter projects to an image
filter which may assumed to be an ellipse. In this section
a method for computing the lengths (SM and sm) and
orientations (/?M and /?m) of the major and minor axes
(M and m) of such an ellipse is given.

In order to compute the orientations and lengths of the
major and minor axes of an image ellipse it is first nec-
essary to derive an expression for the line compression
function, Icf. This function maps line elements at ori-
entation a from a surface with orientation T = (p, q) to
image line elements with orientation /3.

The equations for perspective projection are, x =
X/Z, y = Y/Z, where x and y are image parameters,
and X, Y, and Z are 'world' parameters, and the focal
length, f, is set to unity. Given that the equation of a
plane is defined as AX + BY + CZ - D = 0, the differ-
ential of length, dS, on a surface is given by:

dS = (dX2 + dY2 + dZ2)1'2
(1)
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Expressions for the total differentials dX, dY, dZ can be
derived in terms of image parameters:

dX = (dX/dx)dx + (dY/dy) dy
= K[qxdy - dx(l + qy)]/W (2)

K = D/C, W = (1 + px + qy)2

This can be re-written in terms of the orientation, /?, of
a line element, ds. Substituting dx = cos(f3).ds, dy =
sin(/3).ds into (2), and into the corresponding equations
for the total differentials dY and dZ, yields:

dS = (K/W).(qx.sin(0)-cos(0).(l + qy))2 +
(py.cos(P) - sin(P)(l + px))2 +
(p.cos(0) + q.sin((3)f)ll2 ds (3)



Where x, y is the 'position' of image line element, ds
is the differential of line length at orientation /? in the
image.

In order to simplify notation we can re-write (3) in terms
of a line compression function, Icf, such that:

dS= Icf(x,y,p,q,f3) ds (4)

This will be used to derive expressions for the elliptical
filter parameters.

The Orientation of an Image Filter: The orientations,
@M and Pm, of the major and minor axes of an image
ellipse, which projects to a circle on a surface with local
orientation T, can be obtained as follows.

The value of Icf is minimal for /? = /3M , and maximal for
/? = /?m. Thus if P equals /?M or j3m then the derivative
of Icf with respect to /? is equal to zero. The derivative
of Icf can be shown to be [4]:

d(lcf)/d/3 = a.tan2(P) + b.tan(P) + c (5)

a = - (1 + pq), b = P
2(x2 - y2 - 1) + q2(x2 - y2 + 1) +

2(px - qy), c = 1 + (p + q){x + y) + pq

The values of /3M and /?m may then be obtained by set-
ting d{lcf)/d(3 = 0 and solving (5) for tan((3).

The Length of the Axes of an Elliptical Image Filter:
Consider an image ellipse, with axis lengths SM and sm,
which is derived from a surface circle with diameter of
length Si. Note that both of the axes of this ellipse
are associated with a single circle on the surface. It fol-
lows that m is the projection of a circle diameter at one
orientation on the surface, and M is the projection of
another diameter of the same circle (but at a different
orientation) on the surface.

Substituting a; = x0+s.cos(f3), y = yo+s.sin(/3) into (5),
the length, S\, of a line on the surface which corresponds
to an image length si at orientation /? is given by:

= fS\
Jo

\K/W).(qx0.sin(/3) - cos(/3).(l + qyo)f

(py0.cos(/3) - sin(/3)(l + px0))
2

(p.cos(/3) + q.sin(p))2)1/2 ds (6)

Evaluating (6) and re-writing the resultant equation in
terms of sx yields a function, g, such that:

= g(Si,xo,yo,0) (7)

Thus, given a surface line of length Si which projects to
an image line at, xo,yo, with orientation, /?, the length
of that image line, s1; can be computed from (7).

To summarise. For a circle on a surface with known 3-
space orientation the image orientations, /3m and 0M > of
the minor and major axes of the corresponding image
ellipse can be obtained from (5). These angles, along
with the known surface circle diameter, Si, can then be
used to derive the image lengths SM and sm, respectively,
using (7). Note that the value of the surface diameter
is the chosen value of Si, and defines the scale at which
the surface is to be filtered.

RESULTS

Adaptive multi-scale filtering has been tested on syn-
thetic images of planar surfaces. Each 512x512 image
was filtered with a difference of Guassian (DOG) with
ratio of large to small Gaussian set to 1.6. For the syn-
thetic images tested here the standard deviation of the
larger of the two Gaussians used to construct the DOG
filter is 6 pixel units. Each image has 255 grey-levels.
All zero-crossings in the filtered image were labelled as
edges. The particular 'shape from texture' method used
to re-estimate T = (p, q) after each set Fi has been con-
volved with the image is described in [2]; however, other
methods [3, 4] could have be used for this purpose. The
largest filter in each iteration has a major axis whose
length is the same as the radius of the identical circular
filters of the initial filter set Fo. This means that the size
of filters in Fo acts as a reference size, with other image
filters varying with respect to filters in Fo according to
the estimated surface orientation.

Due to the expense of using filters whose major and mi-
nor axes are not parallel to the x and y image axes, the
actual asymmetric filter dimensions used were computed
as follows. The value of p was set to zero, and the size
and orientation of all filters at a given height, y, in the
image were assumed to be identical to the (vertically
oriented) elliptical filter computed for x = 0, y.

Figures 2 and 5 depict an image of a textured plane with
T = (0.0, -0.839) and focal length of 512 pixel units.
Figure 1 depicts an idealised set of image filters; these
represent the image filters required to detect events at
a single spatial scale on the surface in Figures 1 and 5.
Each edge map is labelled with the (estimated) value of
T{ used to construct the filter set, Fi, and this, in turn,
is used to construct the edge map shown. This edge map
is used to derive a new (re-estimated) value of T = T,+i.

After filtering with a set, Fo, of identical filters, Figure
3 shows that the resultant image edges reflect activity
across a range of spatial scales on the surface. The esti-
mate of surface orientation, Ti, based on this edge map,
is consequently in considerable error (71=0.0,-0.236); the
difference, 6, between the actual and estimated surface
orientation being 31.1 degrees. A new set of image fil-
ters, Fi, based on the value of Ti is constructed and con-
volved with the original image. This new set of image
filters is constructed according to the method outlined in
the previous section, yielding a new filter for each image
position. This process of filtering and re-estimation of
T is repeated and converges at T - (0.0, -0.760). This
represents an error in the surface normal of 2.76 degrees.
Results were also obtained for Figure 5, where the sur-
face texels are not well defined. The final estimate after
6 iterations was T = (0.0, -0.831), an error of 0.270 de-
grees.

A plot of estimated orientation versus iteration for both
Figures 2 and 5 is given in Figure 8. In order to test
that the estimates will converge on the correct value,
Figs 2 and 5 were filtered with a set of filters appro-
priate to T = (0.0,-0.839), the actual surface orienta-
tion. The resultant edge map produced new estimates of
T = (0.0, -0.794) and T = (0.0, -.822); this represents
an error of 6 = 1.55 and 6 = 0.576 degrees, respectively.



For both of the tested images, edges associated with
many spatial scales on the surface were initially detected.
Normally a proportion of such edges would be discarded
on the grounds that their corresponding surface entities
(e.g. patterned texels) cannot be identified in different
parts of the image (and cannot therefore be used to es-
timate T). In contrast each edge in all of the edge maps
of both images tested here was given equal weighting in
estimating T. Thus even the ill-defined surface objects
corresponding to the image edges of Figs 3,4,6 and 7
contribute to the estimation of surface orientation. Pre-
liminary results suggest this method also works well on
images for which no patterned texels can be identified.

This method has been found not to converge in a small
number of cases. This occurs when the computed direc-
tion of tilt (— p/q) associated with T\ has the wrong
sign. This forces the subsequent filter set to be 'tuned'
to a surface even further from the actual surface normal
than was the initial filter set, Fo (for which the associated
value of T — (0.0,0.0)). Non-convergence appears to be
caused by textures whose spatial frequency spectrum ap-
proximates that of 2-D white noise. However, this type
of texture might be expected to cause problems for any
shape from texture method that relies upon the detection
of similar-sized surface objects in the image. In the case
of a pure 'white-noise' texture it is certainly unreason-
able to expect a 'shape from texture' method to estimate
surface orientation, because it is difficult to differentiate
between image frequency components that are derived
from similar surface frequency components.

Certain 'white noise' textures will be more amenable to
a parallel method, from which the serial, adaptive multi-
scale filtering technique was originally derived. This
method, parallel multi-scale filtering [4], has not been
implemented.

Parallel Multi-Scale Filtering

In terms of Marr's[6] three levels of analysis (compu-
tational, algorithmic, implementational), the method of
adaptive multi-scale filtering is pitched at the algorith-
mic level; it specifies a method for excecuting a partic-
ular computational task. The task consists of deriving
a set of image filters, FN, appropriate to a particular
surface orientation, T, where the values of FN and T
are initially unknown. There are many algorithmic level
descriptions for executing this task, one of which is the
method of adaptive multi-scale filtering described above.
Other algorithms, plus possible neurophysiological im-
plementations are considered here.

In order to estimate surface orientation, T, a distribu-
tion of image filters, FN, which can identify events de-
rived from a small band of spatial scales on the surface
must be established. In fact, surface orientation, T, is
implicit in the distribution of filters specified by FN- In
short, FN and T are co-determined. When two variables
are co-determined it makes sense to compute the value
of the one which is easier to evaluate, and, if required,
from this to obtain the value of the other variable. Thus
we might choose to find T, and from this compute FN;
alternatively we might find FN and from this compute

T. Note that the fact that FN and T are co-determined
does not imply that they cannot be evaluated by inde-
pendent means (e.g. T could be obtained from stereo
information). In fact, it will be shown that it is a rela-
tively simple matter to evaluate FN independently of T,
and then to use FN to obtain the value of T.

Consider a one-dimensional image of a one-dimensional
textured surface. In the case of a 1-D image p=0,
the length, Sy, of texture elements is proportional to
l/Z2 = ((1 + qy)/K)2 [4]. The corresponding distri-
bution of image filters, FN, can be obtained by use of
stacked arrays of filters, where each array consists of a
set of filters of a single size, a. Now each image point
is analysed at many scales, a, (i.e. by each array in the
bank of filters). For each image position, y, there will
be a corresponding filter length, crmax — f(y), which will
represent a peak, or local maximum, of activity in the fil-
ter bank, B. If we trace a curve through the set of peaks
in the filter bank (where each peak corresponds to a lo-
cal maximum of filter activity) it would look something
like the curve drawn in Figure 9. Moreover the distri-
bution of filters specified by such a curve is precisely the
distribution, FN, of filters previously derived using adap-
tive multi-scale filtering. As stated above FN and T are
co-determined, so that FN may be used to derive T. In
the case of a planar surface the curve defined by FN is of
the form<7max = H.(l + qy)2 (H=scale constant); that is,
the filters in B that are associated with maximal activ-
ity will be matched to the scale of the strongest Fourier
component of the surface texture. Textures with many
strong frequency components will generate many parallel
'peak-activity' contours in the filter bank, one for each
component.

Each component in the Fourier transform of the sur-
face texture gives rise to a peak-activity contour in B;
and each contour defines a filter set FN- Any one of
these sets may be used to estimate the surface orienta-
tion, by finding that value of q which best describes the
associated parameterized (in the case of a planar sur-
face) peak-curve in B. Finally it should be noted that,
just as a planar 1-D surface can be recovered from its
peak-actitvity contours in a filter bank, so the local ori-
entations of a curved 1-D surface can, in principle, be
recovered from its peak-activity contours.

The rationale given here for 1-D surfaces can be extended
to 2-D surfaces, but the relation between peak-actitvity
contours and surface orientation is more complex. This
is due to the fact that 2-D filters in FN vary not only
in size, cr, they also vary in orientation. In the 1-D case
only one parameter, a, is required to specify a filter,
whereas in the 2-D case three parameters are required.
These are the lengths, SM and sm, of its major and mi-
nor axes, and the orientation, /? = 0M, of the image
filter. Thus the corresponding filter bank for a 2-D im-
age has 5 dimensions, x, y, /?, sM, and sm. The cor-
responding peak-actitvity contours (which are actually
4-D hyper-surfaces) would be drawn in this 5-D space.
However, if the set of filters is restricted so that all image
filters are circular then the filter bank for a 2-D image
would be 3-dimensional, the dimensions being x, y, and
a(=area of image filter). In the case of a planar surface
the area of the filters in a peak-activity contour is of the
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form amax = H.(l + px + qy)~3 [4] (H=scale constant).
As with the 1-D case the surface orientation can be ob-
tained by finding that value of T which best describes
the parameterized curve described by contiguous values
of amax in B. Given that there exists a one-to-one map-
ping between the shape of a peak-activity contour and
surface orientation, the problem of shape from texture
can be reformulated in terms of detecting such contours
in contiguous arrays of filters.

Finally, it has recently been proposed [7] that the known
distribution of receptive field sizes and densities may fa-
cilitate visual interpretation of 3-D surfaces. This ap-
proach suggests that it is not the outcome of the com-
putation of surface orientation that enables detection of
similar surface objects, but that it is the detection of
similar surface objects at many spatial scales in the im-
age that implies a particular surface. The method of
adaptive multi-scale filtering is a fusion of these two ap-
proaches, integrating the process of estimating surface
orientation and detection of surface objects.

CONCLUSION

Adaptive multi-scale filtering provides a general method
for deriving shape from texture without recourse to prior
segmentation of the image into discrete texture elements,
and without any form of thresholding of filtered images.

The problem of scale is an integral part of the problem of
shape from texture. The process of adaptive multi-scale
filtering treats it as such, yielding accurate estimates of
surface orientation even for images of surfaces with large
values of slant.

Future work will extend the method of iterative to deal
with curved surfaces.
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Figure 9: A 1-D textured surface projected onto an image plane produces
peak-activity contours in stacked arrays of filters.
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