
This paper describes a parallel algorithm, MCMAP,
to compute the optic flow along intensity change
curves. The flow is computed locally at cor-
ners, determined as edge points of high curvature,
by cross correlation over time. The (full) flow
is then computed along edge contours by means of
a combined wave/diffusion process. MCMAP has
been implemented on a Transputer array using a
mixed paradigm of a pipeline and a processor farm.

A fast algorithm for computing optic flow
and its implementation on a Transputer array

Han WangT Michael Brady+ Ian PageT

I Programming Research Group
Oxford University Computing Laboratory, 11 Keble Rd., Oxford, 0X1 3QD

+Robotics Research Group
Engineering Science Department, Parks Rd., Oxford, 0X1 3PJ

the flow is estimated everywhere along a zero-crossing
contour using the motion constraint equation. Then
the full flow is estimated by regularisation around the
(closed) contours. The corresponding Euler-Lagrange
equation was solved numerically using conjugate gradi-
ent descent, an intrinsically sequential algorithm. The
results presented by Hildreth are promising (see also [9]
for a close variant called oriented smoothness), though
the conjugate gradient descent algorithm is extremely
slow to converge as motion estimates are propagated
around closed zero-crossing contours (see [11] for dis-
cussion). Hildreth's algorithm also gives unstable results
near around junctions, since zero-crossing contours are
only simply connected and her algorithm made no at-
tempt to locate, or prevent propagation of flow estimates
through junctions.

To improve the time performance, Gong and Brady [7]
have developed an algorithm for recovering flow along
zero crossing contours. This algorithm decomposes flow
into tangential and normal components where the nor-
mal component is computed using the motion constraint
equation. The tangential flow is obtained only at certain
locations along the contour using a certain second-order
expansion of the intensity function called the Curve Mo-
tion Constraint Equation (CMCE). More precisely tan-
gential flow estimates are obtained at locations where
the image Hessian is well-conditioned. Typically, these
are connected sets of contour points near corners. Local
flows estimates are then propagated from seed locations
along contours using the combined wave/diffusion pro-
cess invented by Scott, Turner and Zisserman[12]. Note
that the flow is prevented from propagating through
junctions. The algorithm works on both closed and open
contours. Gong and Brady [7] present a number of re-
sults with a serial implementation of the algorithm.

The curve motion constraint equation involves comput-
ing at each edge point the image Hessian which is:

1 Introduction
The advance of parallel processing technology makes
real-time image processing increasingly feasible. How-
ever, many existing vision algorithms are designed for
sequential machines. Even those that are designed to
be parallel are typically only implemented on sequen-
tial machines. Many algorithms are either not suitable
for implementation on real parallel machines, or are not
efficient. This paper describes a parallel algorithm for
computing optic flow and its implementation on a Trans-
puter array. Experimental results are presented and the
performance on set of Transputers interfaced to a Sun
workstation is analysed.

Assuming that the motion field is smooth, so that the
intensity function I(x,y,t) can be expanded up to first
order to give the familiar motion constraint equation:

(1)

where \i = (u, v) is the optic flow. An early iterative
algorithm was derived by Horn and Schunck [2]. The
scheme works well on smooth portions of flow, eg. those
generated by textured smooth surfaces. However, it fails
at edges where moving objects occlude the background.

Hildreth developed an edge-based approach to comput-
ing the optic flow. First, the normal component of

H =
dxdy

d3r a3/
5557 5p"

Since it involves second differentials, the Hessian is sen-

175 BMVC 1990 doi:10.5244/C.4.32

sitive to noise [9]. To overcome this problem, the tan-
gential flow estimates in the contiguous set of contour
locations were median filtered. Although [6] sketches a
design for a parallel implementation, it was only imple-
mented on a sequential processor.

Our goal was to implement a variant to the Gong-Brady
algorithm on a set of Transputers. Results using the
implemented algorithm are shown in the final section,
together with timings. We call our algorithm MCMAP
(Motion by Corner Matching and Propagation), since
corner locations on contours are found after fitting local
cubic B-Splines, and the corner motion is computed by
correlation over time. MCMAP consists of the following
steps:

(1) Edge Segmentation
Edges are computed using a Canny edge operator;
Charkravarty's edge segmentation algorithm is used
to segment and group edges obtained by the edge
operator [3].

(2) Corner Detection
Corners are detected after fitting cubic B-Splines
locally.

(3) Corner Matching
Local flow at corners is computed by matching edge
contours over time by cross correlation algorithm.

(4) Local Flow Propagation
Local flow estimates are then propagated from cor-
ners using the wave/diffusion algorithm [12, 6].

MCMAP2 The Algorithm
2.1 Edge Segmentation
We have experimented with two edge finders so far: the
Canny edge operator and the LoG (Laplacian of Gaus-
sian). Our experiments show that side effect of the
Canny edge operator is that it produces fewer junctions
than LoG does, which is desirable for the subsequent
propagation process. We plan to experiment with the
morphological edge detector developed by Noble.

The output of the Canny edge operator is a sparse ma-
trix with edge pixels (edgels) set to 1 and non-edgels set
to 0. Edgels need to be connected into contours that
makes the connectivity between edgels explicit. This
process is often called edge segmentation. An edge thin-
ning algorithm is required following edge finding in order
to turn 4-connected edges into 8-connected edges. This
is because edge segmenting algorithms typically assume
single pixel edges.

Many algorithms have been proposed for segmenting
edge contours. Unfortunately, they are either recur-
sive [2, pages 131-146], or need more than one pass
[10], which are not suitable for parallel processing on

distributed memory machines. Charkravarty [3] has de-
signed an algorithm which segments edges in a single
pass in raster order and junctions are processed effec-
tively. We have implemented Chakravarty's algorithm.

Edgels are encoded as lists of Freeman chain links[2].
Lists are polarised as head and tail, as well as chain
links. The data structure of a list contains an array
of chain links and pointers. Lists are referred to each
other by pointers. The algorithm starts from the top
left corner of the edge map, and scans it in raster order.
As it decodes a chain link, the developing contour lists
are searched and a list corresponding to one of them is
added. The rule for padding a link is that the head must
join only with the tail. If the head of a link is found to be
connected with the head of a list, then the link must be
reversed, that is its head becomes tail and tail becomes
head. The next step is to update lists to find if the
newly changed list has a connection with other lists. If
so, these two lists are joined together. The head-tail rule
applies in the same way.

The most important feature of this algorithm is its abil-
ity to deal with junctions. Charkravarty defines some
20 patterns for decoding junctions. Whenever a junc-
tion is encountered the two ends of the connected lists
are closed by setting a close mark. A closed end of a list
can no longer be appended. Instead, a new list is cre-
ated and this new list has its pointer point to the closed
list.

After the edge segmentation process, a grouping proce-
dure organises these lists into a data structure that de-
fines the set of contours. Each contour consists of simply
connected edgels. A filtering process discards lists with
less than 10 edgels and without junctions.

2.2 Corner Detection
Corners are defined here as contour points where the
curvature is either discontinuous or reaches a significant
maximum. Again, many algorithms have been proposed
to locate corners, at various scales. Asada and Brady
[1] used Gaussian filters to smooth the curve and get
both corners and joins. The emphasis of that work was
on scale space interpretation of curvature changes. It
worked well though slowly. Gong [6] surveyed several
algorithms and suggests that least squares fitting gives
acceptable results for computing optic flow. However,
our goal is real-time execution. Hence, a less costly B-
Spline fitting algorithm [8] is adopted and its perfor-
mance is found to be satisfactory.

In the B-Spline approach, a curve S is represented para-
metrically by

176

so that the curvature AC is given by, Normalising time sampling At = 1, we have

df d?g dg d3f
— di ' It* ~ ~dt ' IP

The cubic B-spline approximation involves fitting para-
metric cubic polynomials locally:

x = f(t) =
y = f(t) =

i i i

b7t
2 + c2t + d2

to each set of four adjacent points of (x<_i, y,_i), (2,, y,),
(i,-+i,y,-+i), and (i ,+ 2 , yt+i)- Having found the approx-
imating polynomials, the curvature at point t (i = 0) is
easily seen to be:

K = (2)

The parameters are given by the B-spline formulation.
In particular,

is the displacement of the approximating curves from
the given data points. Medioni suggests repeating the
B-spline fitting process on the displaced points and re-
estimating the curvature. The bottom line is that the
curvature is estimated using a smoothing procedure in-
volving five points. This is fast to compute. Corners are
determined to be contour locations where

1. the curvature is over a given threshold, and

2. the curvature is a local positive maximum or nega-
tive minimum

In Medioni's original algorithm, the displacement mea-
sure (a?,- —d\, y,— d2) is used to determine high curvature
points in addition to the corner points. This measure is
not applicable in our case since we are interested only
in the corners.

2.3 Corner Matching
Corner matching is used to determine the motion of cor-
ners. In our approach, matching is implemented using
cross correlation. Henceforth, let It and It+At denote
image frames at time t and t + At. Assume a corner
point p on a rigid body undergoes motion

vp = (Ax, Ay)\p

where Ax, Ay are the offset at point p over time At, or
in another words, the point p is to be found at p = p +
vp. To find vp, an image window a can be extracted from
It at location p. Given a domain <j> C It+&.t> a window
/? of the same size as a is extracted from <f>. Correlating
Q and P, the offset (Az, Ay) can be determined from
the best match of a and /?, that is,

(Ax
("y)\p At

(n - 1) • aa • up

is a maximum within the search area <j>, where a,J3 are
the mean, and ua, erp are the standard deviation.

The advantage of this corner matching strategy is (1)
it gives both qualitative and quantitative measures of
motion, and (2) the amount of computation is small
since only corners are used for matching (typically, for
a 128 x 128 image, there are 50~100 corner points). In
our experiments, the window size used is 5 x 5 and the
search area is 8 x 8. Larger search areas can be used in
combination with pyramid processing to reduce the over-
all cost. Alternatively, and more interestingly, tracking
algorithms (including the ubiquitous Kalman filter) can
be used to provide prior motion estimates and validation
gates for outlier rejection.

2.4 Propagation
The cross correlation technology applied at corners esti-
mates the full flow at such points. The flow field along
an edge can be reconstructed using a smoothness con-
straint. Applying the Motion Coherence Theory [13] in
one dimension along the edge contour, Gong has shown
that motion estimation along the contour can be prop-
agated from corners by a diffusion process[6]. Unfor-
tunately, a diffusion process is unacceptedly slow for
reasonably long contours. A wave equation propagates
data at a constant speed [12], but does not satisfy mo-
tion coherence theory. For these reasons a combined
wave/diffusion process[12] is adopted by Gong to prop-
agate local flows at reasonable speed, that is each iter-
ation of the diffusion process is interleaved with a wave
equation.

3 Parallel Implementation
MCMAP is implemented in parallel C on an array of
Transputers. Parallel C adopts Hoare's communicating
sequential process (CSP) model. There are two prim-
itives for achieving parallelism—multi-tasks and multi-
threaded tasks. A task is a collection of processes. Com-
munication between tasks are strictly confined to chan-
nels. Threads both provide channels and the ability to
share memory.

177

MCMAP was first run on a single Transputer. In a
typical experiment, the times taken for each functional
step was measured, Typically, for 128 x 128 images,
timings measured are:

(1) Edge operator + thinning = 3sec

(2) Segment = 0.5 ~ QJsec
(3) Corner Detection & Matching = 2.5 ~ 3sec

(4) Wave/diffusion = 10 ~ 15sec

We are unconcerned about the time taken for edge de-
tection and thinning, since we expect to transfer this
computation imminently to a Datacube image proces-
sor, interfacing to the Transputers using a board devel-
oped by BAe Sowerby. Each procedure is dependent on
the previous one, thus the processes can be pipelined.
Note that the wave/diffusion process takes considerably
longer than the other processes. However, it is natu-
rally decomposable, since the propagation along differ-
ent contours are completely independent of each other.
To exploit this, we introduce a processor farm to share
computations among processors. This suggests a mixed
network topology of a pipeline and a processors farm
[5]. Procedure (1), (2) and (3) are placed into three
processors connected as a pipe. The wave/diffusion pro-
cedure is loaded into three other processors to compute
edge contours independently. In this system, there is
also a frame grabber to provide a sequence of images
and a user interface and dealing with file I/O. Figure
1 is the connection diagram for MCMAP. Thereafter,
the processor for computing edges will be referred to as
edge processor, hence segment processor, corner proces-
sor and wave/diffusion processor. The frame grabber is
not connected at present and is replaced by a normal
Transputer called the server.

3.1 Pipeline
In addition to grabbing images, the server has two other
jobs: (1) sending a sequence of images to both edge and
corner processors, and (2) receiving computed contours.
Two threads run simultaneously on the server to carry
out these two tasks. In Figure 1, the output of segment
processor is a group of edge contours of varying length.
The corner processor needs data of both edge contours
and intensity images to conduct the corner matching.
There is a link between the corner processor and the
server to short cut the path for sending images form
server to the corner processor.

In each iteration of the sending thread in the server, an
image is captured and sent down to both the edge pro-
cessor and the corner processor. The receiving thread
gets a number N of contours from the corner proces-
sor, and then gets N contours from the wave/diffusion
processors.

3.2 A Processor Farm
In the wave/diffusion process, a single job corresponds to
a contour. The complexity of a job can be approximated
by O(c+1

lno .), where t is the length of the contour and
c is the propagating speed of the wave. Often computa-
tions are skewed, for example, in our experiment (Figure
4) the time spent on computing the outline of the car
{(. = 127) is greater than the sum of computing the rest
of contours in one image. Hence, a dynamic scheduling
strategy is adopted [4]. In this dynamic model, con-
tours are sorted in descending order. An idle processor
will ask for a contour; when the corner processor finished
computing a contour, it will then send this contour to
the requesting processor.

Figure 2 is the logical diagram for the processor farm.
wO, wl, and H2 are the wave/diffusion process; "+" and
"—" are the multiplexer and the de-multiplexer. Edge
contours come through the in channel and goes out from
the out channel. Requests from idle processors are com-
ing from the request channel.

Normally, a worker processor will have one job buffered
when it is computing another one. In some cases, in-
cluding the car experiment, the processor which gets the
biggest job will dominate the entire computation time.
Hence, it is not suitable to buffer another job for this
processor.

4 Experiments and Discussion
In this section, we present two examples of using
MCMAP on real image sequences. We have made sev-
eral motion sequences each of thirty images. Video of
the resulting tracking algorithm has been made. Fig-
ure 3(a) is a cup moving towards left on a static table
background, 3(b) shows the edge segments after filtering
and the local estimates of corner motion. Figure 3(c) is
the propagated full flow along edge contours. Figure 4
shows two cars moving towards the top right corner of
the image. It is obvious that one car is moving faster
than the other (note the length of the flow vectors).

The following table gives timings (in seconds) of
MCMAP on a Sun 3/75 workstation and T800 Trans-
puters for the above examples. Images are 128 x 128 x 8
bits.

Images
cup
cars

Sun3
36.6
28.3

1 T800
17.7
12.9

8T800
4.3
2.7

Obviously, the current architecture scales easily as ad-
ditional Transputers are made available. For example,
edge detection can be shared by more than one proces-
sors using a closed ring. Inherently, MCMAP consists
of two distinct parts, where the first part (edge finding,

178

and edge segmenting) is data independent and the sec-
ond part is not. We intend to use a Datacube to execute
the first part and a Transputer array to implement the
second part.

A comment contrasting MCM AP with Gong's curve mo-
tion constraint equation should be made. In Gong's
algorithm, the normal flow n was computed using the
motion constraint equation

=w
where y. is the full flow. Gaussian smoothing was used
before applying this equation. Let G denote the Gaus-
sian function, and <8> denote convolution, then

I =G®I

Since, in general,

dl dl
dt

n is only a qualitative measure. For the same reason, the
measurement of the tangential flow cannot be accurate.
However, this is not a problem in MCMAP where flows
are not decomposed into tangential and normal compo-
nents; instead local full flow estimates are propagated.

[6] S. Gong. Parallel Computation of Visiual Motion.
PhD thesis, Dept. Engineering Science, Oxford Uni-
versity, Sept. 1989.

[7] S. Gong and J. M. Brady. Parallel computation of
optic flow. 1990. to appear.

[8] G. Medioni and Y Yasumoto. Corner detection and
curve representation using cubic b-splines. In IEEE
Int. Conf. on Robotics and Automation, pages 764—
769, San francisco, CA, 1986.

[9] H. Nagel. On the estimation of optical flow: Re-
lations between different approaches and some new
results. Artificial Intelligence, 33:299-324, 1987.

[10] T. Pavlidis. A minimum storage boundary tracing
algorithm and its application to automatic inspec-
tion. In IEEE Trans. Syst. Man Cybern, volume
SMC-8, pages 66-69, 1988.

[11] G. L. Scott. Fast recovery of the optic flow around
a closed contour using stabilised regression onto
fourier components. In the Fifth Alvey Vision Con-
ference, Sept. 1989.

[12] G. L. Scott, S. Turner, and A. Zisserman. Using a
mixed wave/diffusion process to elicit the symmetry
set. In Alvey Vision Conference, Sept. 1988.

[13] A. Yuille. A motion coherence theory. In IEEE
Inter. Conf. on Computer Vision, Tampa, Florida,
Dec. 1988.

References

[1] H. Asada and J. M. Brady. The curvature primal
sketch. IEEE Trans, on PAMI, PAMI-8(1):2-14,
1986.

[2] D. H. Ballard and C. M. Brown. Computer Vision.
Prentice-Hall, New Jersey, 1982.

[3] I. Charkravarty. A single-pass, chain generating al-
gorithm for region boundaries. Computer Graphics
and Image Processing, 15:182-193, 1981.

[4] P. M. Dew and H. Wang. Data parallelism and
the processor farm model for image processing and
synthesis on a transputer array. In Proc. of SPIE
Symposium, volume 977, pages 212-220, Aug. 1988.

[5] P. M. Dew, H. Wang, and J. A. Webb. Apply: Ma-
chine independent image processing language and
its implementation on a meiko computing surface.
In 5th Alvey Vision Conference, Reading, UK, Sept.
1989.

179

edge

finder

monitor

segment

corner

detect I

match

wave

diffsu-
3 ion

wave

diffau-
aion

wave

diffau-'

sion

Figure J. Hardware Configuration for MCMAP

Figure 2. The Processor Farm

Figure 3. A cup moving left

(c)

(b) (c)

Figure 4. Two cars moving with different speeds

180

