
A Multiprocessor 3D Vision System for Pick and Place
Michael Rygol, Stephen Pollard and Chris Brown

Artificial Intelligence Vision Research Unit,
University of Sheffield,

Sheffield S10 2TN

We describe a 3D vision system implemented upon a
locally developed transputer-based hybrid parallel
processing engine named MARVIN (Multiprocessor
ARchitecture for VIsioN), hosted by a SUN worksta-
tion. In addition to the recovery of scene descriptions
from edge based binocular stereo, the system incor-
porates a model matching algorithm which is able to
accurately locate modelled objects within such scenes.
The competence of this vision system is demonstrated
by visually guiding a robot arm to pick up various
objects in a cluttered scene with a total processing
time of approximately 10 seconds.

INTRODUCTION AND OVERVIEW

The computational complexity of machine vision
algorithms is such that their use in industrial environ-
ments is often limited when executing on conven-
tional sequential computer architectures. It follows
that much potential for improvement exists through
the application of parallel processors. However,
realising that potential is not entirely straightforward
as the type of parallelism is not uniform throughout
the processing cycle. At the lower levels, tasks such
as edge detection involve only local image operations
and offer much potential for spatial parallelism. At
the topmost level, model matching offers greatest
potential for model instance and featural parallelism.

The goals of the work described in this paper are
twofold. Firstly, to demonstrate that it is possible to
develop a large parallel 3D vision system (as opposed
to the parallelisation of a single image processing rou-
tine often presented elsewhere). Secondly, to demon-
strate the suitability of our prototype general purpose
vision engine, MARVIN, for exploiting numerous
forms of parallelism within a single overall applica-
tion.

MARVIN has been designed to provide a balance
between frame-rate hardware and a general purpose
parallel computing resource. The system has been
designed to be both general purpose and easy to use.

SYSTEM ARCHITECTURE

MARVIN'S 25 processors (T800 transputers) are
firm-wired as a regular, fully-connected mesh with 3
rows, 8 columns and an extension for the root tran-
sputer. The machine architecture is further described
in [1]. A scaled down version is shown in figure 1.
Two links from the root transputer are connected to
the host machine. Link 0 provides the usual boot path
and I/O interface whereas link 1 provides a dedicated
communications path to tditool (a multi-window tool,
running in Sunview) allowing multi-processor console
I/O [2].

Figure 1. Marvin System Architecture

One of the rows consists of locally developed tran-
sputer cards (named TMAX) provided with 4 frame-
rate byte-wide bidirectional video busses (the industry
standard MAXbus, by Datacube Inc) and circuitry to
control the operation of these busses, such as the abil-
ity to obtain a region of interest from the video
stream. These busses may also be ganged to allow the
transfer of wider data streams up to 32 bits. All other
processors are standard T800 + 2Mbyte TRAMs
(Transputer Modules).

This research was supported by SERC project grant no. GR/E 64497 awarded to J.P. Frisby and J.E.W. Mayhew under
the ACME programme in collaboration with GEC Hirst Research Centre, Wembley

169
BMVC 1990 doi:10.5244/C.4.31



The TMAX cards are instrumental in providing a fast
data path through the system for (predominantly)
image data, minimising data transit times, a common
problem with message passing machines. It is our
intention to exploit further the MAXbus facility by
adding compatible cards to perform frame rate image
processing operations (eg. convolution).

The stereo images (512 pixels square) are simultane-
ously grabbed from a pair of ccd cameras via two
Datacube Digimax framegrabbers into Datacube
framestores. The framestores share a number of
MAXbus ports with the row of TMAX cards through
which synchronised image acquisition can be
achieved by the TMAX cards (utilising a shared inter-
rupt signal).

Resident on each TMAX is a server providing
network-wide facilities. Any task on any processor
may request operations from these servers. Such
operations include region-of-interest acquisition, data
plotting and low level control operations. Access to
these operations is via a library of function calls.

The entire system is programmed in Parallel C and
runs within a locally developed run-time environment
[2]. The model of parallelism adopted is based upon
Communicating Sequential Processes (CSP) where the
system comprises a number of sequential processes
executing concurrently and communicating via chan-
nels [3]. Our run-time environment allows all
processes throughout the system to communicate with
each other via virtual channels, allowing (addressed)
messages to be exchanged between processes that
have no knowledge of the hardware topology.

The root processor performs no vision processing but
holds the highest levels of the control architecture
and runs various servers to provide host facilities to
the rest of the network.

Worker processors provide various repertoires of
resources which are requested to do work by other
processes in the control architecture, employing a
client-server model. The development of this tech-
nique has greatly simplified the addition of new com-
petences to the system.

Vision processing is broken down into a number of
tasks each of which may itself be multi-threaded. (A
"thread" is a lightweight process that may share code
and data with other threads.) Numerous copies of the
vision task bundles are distributed across the network.
Each of these tasks receives a control message that
contains all of the necessary run-time parameters for
that task. This technique allows dynamic changes of
operation in the system.

CONTROL ARCHITECTURE

System control is hierarchical and distributed. At any
level in the hierarchy, the system comprises a small
and manageable number of processes each with a
well-defined interface, allowing simplified interaction
within the system.

A simplified version of the control architecture is
shown in figure 2 where higher levels of the hierarchy
are towards the centre. The top levels of the control
hierarchy are resident upon the root transputer. A con-
trol thread is created on the root processor for each
sub-group of processors performing the vision pro-
cessing allowing asynchronous control, if necessary.
A central thread, the highest level in the hierarchy,
controls the operation of the vision processes via
these threads. Each vision process has no built-in
knowledge of where its data comes from or where
results are to be sent. The action of the machine is
completely fluid, all dataflow being determined by the
control architecture at run-time.

Each vision process communicates with its (superior)
control thread upon completion with a small reply
packet. The controller then uses this information to
instruct the task performing the next processing stage.
In this way the various tasks are kept independent
from each other as much as possible.

Figure 2 Control Architecture

Some of the tasks require asynchronous control opera-
tions. In this case, control information is received by
a separate thread running within the task, allowing
control information to be asynchronously decoupled
from data flow.

The MARVIN Software Infrastructure [2] allows us to
ignore the physical communication paths between
tasks and the physical interconnections between pro-

170



cessors, allowing any logical topology to be chosen
and changed dynamically.

Figure 2 highlights the principle of the distributed
control paradigm. It is easy to see that control of a
parallel system is made simple and "open" using this
technique as opposed to, say, a completely centralised
or data driven organisation. The user may then inter-
face with the system via the top level of control.

RECOVERY OF 3D SCENE GEOMETRY

This vision system is derived from the AIVRU TINA
system [4] which employs edge based stereo triangu-
lation as a basis for three dimensional description.

We employ spatial parallelism by dividing both left
and right images into 8 horizontal slices approxi-
mately 64 rasters wide. A small overlap (2 rasters)
between adjacent slices is incorporated to avoid boun-
dary effects and simplify the processes of recombina-
tion that occur later. There is a limit to how thin the
image slices can be made without adversely effecting
the reliability of the stereo matching process. How-
ever, potential does exist for further subdivision of
images in the horizontal direction with a small
increase in the complexity of the stereo matching
algorithm.

Each image slice pair is acquired simultaneously into
an allotted TMAX, controlled remotely by the control
task on the root processor. The pair of transputers
vertically adjacent to the TMAX are used to process
the left and right image slices in parallel. The size of
the right image slice is adjusted to take into account
the warping effect of the rectification of edge loca-
tions into a parallel camera geometry. This is deter-
mined from a copy of the calibration data resident
upon each processor (this may be updated dynami-
cally to allow for updated calibration estimates to be
incorporated).

Obtaining Edges

Edges are obtained to sub-pixel acuity from grey-level
images by a single scale high frequency application of
the Canny edge operator [5]. The high frequency
operator used here employs a gaussian mask of sigma
1.0. Convolution is computationally expensive but
fortunately the two dimensional gaussian smoothing
can be achieved through two 1 dimensional convolu-
tions (i.e. first along the rows and then the columns).
However, it is our preferred intention, in the longer
term, to use specialised convolution boards directly
on the MAXBus video stream.

Each Canny process obtains the raw image slice from
a TMAX with a simple parameterised function call.
The Canny task processing the left image slice packs

the resultant edgemap into a data packet and sends it
to a collection thread running within the right Canny
task. Upon completion, the right Canny task and the
collection thread rendezvous and send a reply to the
control thread, on the root processor. Following
detection, edge strings are formed by linking edge
pixels (edgels) into chains of connected components.

Stereo Matching

We use a locally developed algorithm, PMF [4], for
stereo matching. In PMF, matches between edges
from the left and right images are preferred if they
mutually support each other through a disparity gra-
dient constraint and if they satisfy a number of higher
level grouping constraints, most notably uniqueness,
ordering (along epipolars) and figural continuity.

The PMF task runs on the processor that now holds
both edgemaps (the one that held the right image
slice). The edge structures are organised so as to
make both spatial location and connectivity explicit.
To avoid major data transfer and recomputation the
PMF control packet (sent from the root) simply con-
tains a pointer to the edge structures in the memory
shared by the threads.

Geometrical Elements

As well as being matched, edge strings are processed
to recover descriptions of the two dimensional
geometrical elements they may represent. This pro-
cess is currently limited to straight line descriptions
though in previous implementations we have also
recovered circular descriptions, and are currently
developing methods to identify ellipses. The algo-
rithm uses a recursive fit and segment strategy. Seg-
mentation points are included when the underlying
edge string deviates from the current line fit. Robust-
ness of the system (and its speed) relies upon the fact
that a heuristic search strategy is used to identify
those regions of strings/segmented sub-strings that are
most amenable to straight line fit. The actual fit is
computed by orthogonal regression.

Given descriptions of the two dimensional geometry
(in a single view) and the results of the application of
the stereo algorithm to the underlying edge strings, it
is possible to recover three dimensional geometrical
descriptions. Disparity values can be obtained along
the 2D geometrical descriptors for each matched edge
point. A second stage of 2D fitting (in arc length
against disparity) computes the fit in disparity space.
Finally, disparity data is projected into the world
using transformations based upon the camera calibra-
tion. The sequence of operations taking place on
each pair of processors is shown in figure 3.

171



Left Image

T

Right Image

T
Left Canny

j Edgels ,

i

Right Canny

r | Edge/*

PMF

T
Poly Approx

2-0 lines 1
T 1

Disparit

Geom

3-D line geometry

Figure 3. Dataflow for recovery of scene

geometry for each image pair slice

At this point in the processing, the 3D geometry from
the current scene is spatially distributed across a
number of processors. This data needs to be
integrated into one data set as if it came from a single
processor. A Joiner task (figure 5) communicates with
all of the 3D geometry tasks, receiving both 2D and
3D information. These descriptions are optimally
combined where valid 2D connectivity is identified
between image slices. Upon completion, the Joiner
returns the integrated geometry to the main control
task resident on the root processor. The controller
then forwards this information to a number (defined at
run-time) of model matcher tasks distributed
throughout the network.

Figure 4 shows an example of the 3D geometry
recovered from a scene, projected over a ground
plane.

Figure 4. 3D Geometry with ground plane

One important consideration in this parallel vision
system is that the computation of descriptions higher
in the processing chain is dependent upon large
amounts of previously computed data. For example
the 3D data structure is dependent upon both 2D
polygonal approximations and the matched edges.

Accordingly, the use of the traditional processor farm
is inappropriate as the amount of data flow required
would make it unusable.

MODEL MATCHING

The model matcher is able to give accurately the
position and rotation of modelled objects (defined in
terms of their 3D geometrical primitives) from the
geometry recovered by the earlier processing stages.

The adopted strategy [6] is to base initial matching
hypotheses on congruencies identified between 3D
scene descriptions and a chosen subset of features
from the model. Following hypotheses, potential
matches are ranked on the basis of the extent to
which further support exists for the three dimensional
transformation they implicitly represent (between
model and scene). The algorithm exploits ideas from
several sources: the use of a partial pairwise geometr-
ical relationships table to represent object model and
scene description from Grimson and Lozano-Perez
[7], the least squares computation of transformations
by exploiting the quaternion representation for rota-
tions from Faugeraus et al [8], and the use of focus
features from Bolles et al [9].

Whilst exhaustive search for maximal cliques of con-
sistent scene and model descriptions is avoided, the
algorithm still requires a considerable amount of
searching to be performed. Furthermore, the compu-
tational expense of the algorithm (which increases
roughly linearly with the scene complexity) is repli-
cated for each modelled object when implemented on
a sequential machine.

The most obvious way to exploit the architecture of
MARVIN in the model matching phase is to run mul-
tiple instances of the model matcher on different pro-
cessors, thereby searching the same data for different
models. This limits the parallelism to the number of
models being searched for and is still too computa-
tionally time-consuming. A further degree of paral-
lelism is obtained by employing a multi-level control
architecture within the matching process itself. The
model matching process is decomposed into separate
searches for feature sets from the modelled object in
the spirit of characteristic views [10]. A characteris-
tic view in this scenario is deemed to consist of a set
of geometrical features of the object that are con-
sistent with a range of closely related viewpoints of
the object. This, in effect, allows the distribution of
the search tree over a number of processors.

To realise this in a consistent manner, a virtual
matcher is used. The virtual matcher receives a con-
trol message describing the name of the model to
become its responsibility and a list of processors

172



available for use (allocated at run-time, typically 6)
which have a resident matching task which will be
instructed to search the scene geometry for a particu-
lar characteristic view of the object. The virtual
matcher obtains all relevant information about the
model (from files on the host machine) and the
current geometry (from the Joiner) and distributes this
information to its subordinates. The virtual matcher
retains a precomputed grasp position, specifying a
pick-up position in the coordinate frame of the model
description. Each subordinate matcher attempts to
locate a subset of the model features.

Distributed geometry

M I N I
T t H T T

Joiner

1 Geometry, r

matcher matcher

Virtal matcher Virtual matcher

Location of object B Location of object A

T T

matcher matcher

Robot server

IRobot commands

Figure 5 Geometry joining and object location for
two objects (A &. B) each with two subordinate matchers

Upon completion, the virtual matcher chooses the best
match obtained from all of its subordinates and feeds
the object location and grasp position (now
transformed into the world coordinate frame) up to
the next higher level of the control hierarchy. A vir-
tual matcher is used for each model to be located in
the scene with the resources of the entire network
being shared between them.

Figure 6. Matched models

This technique allows a search to be made for multi-
ple objects (with no extra time penalty) in a con-
sistent, flexible and highly efficient manner (figure 5).
Figure 6 shows the reprojection of three matched
models onto the original image along with their grasp
positions.

CONTROLLING THE ROBOT ARM

A UMI robot controlled by an IBM PC is used to per-
form the pick and place. The IBM PC is in turn con-
nected to a SUN 3 workstation over a serial line.
MARVIN may talk to any SUN in our network by
means of the UNIX socket mechanism. Facilities pro-
vided by our run-time environment allow any task on
any transputer to open and communicate with sockets
to the outside world [2].

Each virtual model matcher returns a rotation and
position of the relevant object. This information is
used to transform a precomputed grasp position from
the model coordinate frame to the world coordinate
frame.

This information is sent over a socket to a server con-
trolling the robot (figure 5) on a remote machine
according to an agreed protocol, specifying the name
of the model, where to pick it up and what to do with
it. MARVIN need have no concern with solving the
inverse kinematics, camera to robot transformations
and path planning in order to pick the objects from
the workspace, these issues are computed in different
areas of the computer network. An example of the
robot picking up a widget is shown in figure 7.

The hand-eye calibration (the transformation between
camera space and robot space) is obtained by using
TINA to locate a flag held in the gripper of the robot
arm. This is repeated numerous times in various posi-
tions of the robot workspace. A least-squares method
is used to obtain the best transformation.

Figure 7. Robot picking up a widget

173



CONCLUSIONS

A multiprocessor transputer-based vision system has
been described. We have employed two different
techniques to utilise the parallel hardware. The
recovery of the scene geometry employs spatial paral-
lelism by decomposing the image pairs into horizontal
image slices. This is a natural approach as depth data
is obtained by matching elements between left and
right images. The requirement to transfer image data
quickly into the heart of the network is overcome by
means of the MAXbus and TMAX cards, making the
architecture of MARVIN well suited to exploiting
spatial parallelism.

The model matching process is parallelised on a
featural basis, using a hierarchical control strategy.
Our run-time environment provides a suitable frame-
work for integrating processing modules by allowing
processors to provide various resources to be utilised
by any other requesting processes.

Using MARVIN we have a system that in a former
incarnation took well over one hour to to locate one
object, now runs in around 10 seconds, locating
numerous objects, making it far more practicable to
perform interactive "what-if" experiments and thus
bringing this level of visual competence ever closer to
the industrial domain.

A more detailed breakdown of processing timings for
a typical scene is shown in table 1. The two vision
processes which have benefited most from being
parallelised are the Canny and model matching stages,
the two most costly tasks on a sequential machine.

Over the entire sequence of operations from grabbing
the image to obtaining four matched models we
achieve an average performance per processor of over
80%. This figure relates the estimated time taken by
one processor to the time taken by 24 processors.

Building a parallel vision system on a multi-processor
architecture has usefully demonstrated the applicabil-
ity of parallel techniques to machine vision. Design-
ing the machine around a set of general purpose pro-
cessors such as the transputer, rather than dedicated
hardware has given us a high performance machine
whilst retaining flexibility.

All knowledge gained from experiences with MAR-
VIN will be highly relevant in the building of a next-
generation machine which will utilise the forthcoming
HI transputer and further frame-rate hardware ena-
bling us to start to approach real-time processing with
a general purpose machine.

Work is in hand to implement a parallel feature
tracker on MARVIN which will follow (at near real-
time) features identified as being those from a

modelled object. This beacon tracking is to provide
some of the information required to enable our in-
house vehicle to navigate through an unknown
environment.

Vision Process

Canny
PMF

2D Geometry
3D Geometry

Geometry joining
Model Matching

System Overheads

Total

Time (ms)

5500
1000
100
200
100
1600
1000

"10000

Table 1. Processing times

REFERENCES

1. Brown C. and Rygol M. (1989), "Marvin : Mul-
tiprocessor Architecture for Vision", Proceedings of
the 10th Occam User Group Technical Meeting

2. Brown C. and Rygol M. (1990), "An Environ-
ment for the Development of Large Applications in
Parallel C", Transputer Applications '90

3. Hoare C.A.R. (1985), Communicating Sequential
Processes, Prentice-Hall International.

4. Porrill J, Pollard S B, Pridmore T P, Bowen J,
Mayhew J E W , and Frisby J P (1987) "TINA: The
Sheffield AIVRU vision system", IJCAI 9, Milan
1138-1144.

5. Canny J (1986), "A computational approach to
edge detection", Trans. Patt. Anal. & Mach. Intell,
679-698, PAMI-8.

6. Pollard S B, Porrill J, Mayhew J E W and
Frisby J P (1986) "Matching geometrical descriptions
in three space", Image and Vision Computing, Vol 2,
No 5 (1987) 73-78.

7. Grimson W.E.L. and T. Lozano-Perez (1984),
"Model based recognition from sparse range or tactile
data", Int. J. Robotics Res. 3(3): 3-35.

8. Faugeras O.D. and M. Hebert (1985), "The
representation, recognition and positioning of 3D
shapes from range data", Int. J. Robotics Res

9. Bolles R.C., P. Horaud and M.J. Hannah (1983),
"3DPO: A three dimensional part orientation system",
Proc. IJCAI 8, Karlshrue, West Germany, 116-120.

10. Freeman H. and Chakravarti I. (1980), "The
Use of Characteristic Views in the Recognition of
Three-Dimensional Objects", Pattern Recognition in
Practice, pp 277-288, Gelsema and Kanal (Eds),
North-Holland.

174


