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A symbolic model of cerebral anatomy is outlined. Rules
based on a multi-resolution representation of MR images, are
used to instantiate principal landmarks in the model. These
then allow a more detailed analysis of image features, using
the expected structure of secondary anatomical features.

INTRODUCTION

This paper reports work carried out within the Alvey MMI-
134 project (“Model-based Interpretation of Radiological
Images™). The objective of the work is to identify and label
the anatomical structures visible in multi-slice Magnetic
Resonance (MR) Images of the head. An example image is
shown in Figure 1.

The identification of anatomical structures requires:

(1) A means to represent the anatomical knowledge
which defines the structures.

(2) A representation of the image data, which allows
important features to be extracted easily.

(3) A setof recognition rules, allowing features found in
(2) to be identified with objects in (1).

Figure 1. Typical MR image used in the study.

Anatomical structures are inherently difficult to encode, since
there is considerable variation between different patients.
Furthermore, the image detail is greatly affected by the
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control settings of the imager, and the geometry of the slice.

A hierarchical model of the brain has been developed, based
on the ART™ system, in which nodes represent the structures
of interest, and arcs represent 3-D topographical relationships
between organs and part-of relationships. The nodes contain
attributes of the organs which encode their expected shape
and identifying features; they also attach to the recognition
rules, which use the measured attributes and relationships to
identify the structures.

In this paper the image data is pre-processed to create a
Laplacian Pyramid by using multiple Difference of Gaussian
(DoG) filters (see Figure 2). Most of the reasoning used in
the recognition rules is based on zero crossing features of the
DoG images, which may be tracked between scales, or
between images of adjacent slices.

s
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Figure 2. DoG images at 2 scales, of the lower portion of
figure 1.
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Figure 3. Fragment of the symbolic anatomical model, showing typical spatial relationships.

Other features of DoG images, such as ridges, and the
statistics of lobes in them, or indeed other image coding
schemes (Rosin et al 1990) are also under study within the
Alvey project.

This paper mainly concerns the anatomical model, and the
recognition rules based on features in the DoG data set.
Principal landmarks such as the scalp outline, and the lateral
ventricles can be identified with the minimum of contextual
knowledge. The anatomical model then mobilises detailed
expectations whereby context-specific knowledge can be
used to search for less well-defined organs. This in turn
further instantiates the model and the final interpretation
evolves progressively.
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THE ANATOMICAL MODEL

Essential anatomical facts are represented by means of a high
level symbolic model of the human brain. This model takes
the form of a frame-based semantic network, which is
complementary to other low-level models (Niemann et al
(1988), Mowforth & Zhengping(1989), Hawkes et al (1990)).
The nodes in the network represent anatomical features.
Links in the network express spatial and logical relationships
between the anatomical features. The model can be viewed
conceptually as three co-existing graphs. The first represents
a part hierarchy describing the required components of the
brain. The second is a graph of adjacencies or constraint
relations between nodes in the model. For most anatomical
features the spatial relations are expressed only between
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Figure 4. Part of the anatomical model.
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nodes at the same level in the part hierarchy. Spatial
relationships between nodes at different levels can be
inferred. The third graph is an IS-A type graph connecting
image features to the model.

Salient features in the image are located and summarized in
terms of their position and shape. These initial features are
then labelled as candidate nodes in the model allowing for
one image feature to be a candidate for many nodes. Initial
matching between nodes in the model and image features is
based on intrinsic attributes of features such as size and shape
(as opposed to relationships between features). Multiple
‘viewpoints’ are used to allow the co-existence of potentially
conflicting hypotheses. For example, the hypothesis that
feature “A” extracted from the input image is an inferior horn
of the left lateral ventricle is conflicting with the hypothesis
that “A” is an inferior hom of the right lateral ventricle. Even
50, both hypotheses may be supported to the same degree and
both must be allowed to co-exist.

The ‘model viewpoint’ contains all the information regarding
the anatomical model (Figure 3 & 4), as well as rules for
combining and reasoning about viewpoints. New viewpoints
are generated whenever a potential image feature has been
located in the images and a label assigned to a model node.
Merging of viewpoints is controlled via a rule base which
decides whether salient features are compatible with each
other. If viewpoints are not incompatible, then they are
merged and replaced by a new viewpoint. This creates a tree
structure of co-existing viewpoints.

Further processing is carried out to support or refute
viewpoints until the number of remaining viewpoints can no
longer be reduced. The result of further processing may be to
‘poison’ viewpoints as well as to merge them. Compatibility
of viewpoints is checked by comparing spatial relationships
between nodes in the model with spatial relationships
between image features. For example if an image feature “A”
is labelled as the ‘post-central-gyrus’ and a second image
feature “B” is labelled as the ‘central-sulcus’, then “A” must
be posterior-to “B” as this is a pre-requisite specified in the
anatomical model. If “A” and “B” are not compatible then no
hypothesis is allowed to exist in which they are both true.
Figure 2 shows a stylized view of the part of the knowledge
base used in the location and identification of the major sulci
and gyri on the cortical surface.

IMAGE DESCRIPTIONS

MR images were acquired with a 1.5 Tesla Phillips Gyroscan,
using a T1 weighted spin-echo pulse sequence with two
signal averages; producing 126 slices at 256X256 resolution,
DoG filters of either 1/2 or 1 octave separation have been
used depending on the quality of the image set. The notation
used in this paper, for example, DoGg s refers to a filter
comprising a +ve Gaussian of ¢,= 8 and a -ve of 5, = 16.

The shape of image features is extracted in the form of a
skeleton description, or as edge-contours taken from DoG
images. These are the primary features which are matched
against objects held within the model.

Figure 2 illustrates the fact that the evidence for anatomical
structures in the DoG images is highly dependent on the scale
used: coarse scales are simple but inaccurate, fine scales are
detailed, but confused. Different scales are useful for
different aspects of the visual interpretation process. The
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initial localisation and identification of the most conspicuous
organs can often be carried out in coarse scales. This estimate
provides a context which can then be used to seed a search for
more accurate location in finer scales (details are given in the
Appendix).

The recognition rules in this work use two primary features
derived from DoG images: the binarised regions of connected
positive or negative values (dark and bright lobes in Figure
2), and the connected contours formed by the ZCs. The main
attributes computed include the position in the image
(relative to the outer boundary of the scalp), shape
characteristics of the zero crossing contours, first and second
order statistical measures of the regions, and characteristics
of the symmetry axis transforms of the regions. Two types of
features, and their corresponding recognition rules have been
implemented: region-based, and edge-based.

Region-based methods. Binarised DoG images (see Figure 2)
are segmented into connected components to form separate
regions. A wide range of conventional region-based measures
can be applied. We make use of the low-order statistics, and
also the position, structure and curvature of the symmetry
axis transforms (derived either by maximal disc, or grass-fire
algorithms, Arcelli (1981)).

Manually identified regions in trial images have been used to
establish prototypical attributes for some of the major
anatomical structures, including the scalp outline, the sub-
arachnoid space, and the body and posterior horn of the
lateral ventricles.
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Figure 5. Zero-crossing connectivity confusions avoided by
bi-linear pre-scaling of the image.

Edge-based methods. Zero-crossings (ZC) in the DoG images
are connected into contours by tracking between neighbours.
One attraction of using ZCs is that, in principle, they form
distinct closed contours. However, two problems arise in
practise with discretely sampled images: i) locally ambiguous



connections, where ZCs touch, and ii) disruption by noise.
These problems can often be controlled by applying a
threshold based on the ZCs slope when extracting connected
contours, and then connecting nearby free-ends (which have
the right polarity).

Zero-crossings are sampled at the pixel density. Therefore
local ambiguity of connectivity is frequently observed at the
finest scales used (see Figure 5) because independent ZCs can
occur in adjacent pixels. Hildreth’s algorithm overcomes this
by modeling the ZCs to sub-pixel accuracy. We have adopted
a simpler method. The image is first expanded by bi-linear
interpolation, then the DoG filter is applied (at twice the
scale). This proves to be very effective in disambiguating the
connectivity in ZCs (see Figure 5).

RECOGNITION RULES

Simple characteristics in a coarse scale image (DoGyg ) may
be used to identify the principle landmarks in the image. The
landmarks then focus subsequent search for other detail. The
following methods have been developed.

(1) Identification of the scalp outline. The outer scalp
boundary is usually very easy to identify in an MR image
such as Figure 1. The ZC contours in an intermediate scale
usually contains a strong outermost curve of appropriate
polarity. Subject to certain rules for expected size (given the
approximate position of the slice), and position this is
accepted as the scalp outline.

The scalp outline is normalised (by radial expansion) to a unit
circle, and this provides the coordinate frame for further
processing (the orientation remains that of the original
image).

VY.

Figure 6. Coarse-to-fine refinement of the lateral ventricles.

(2) Identification of the ventricles. The ventricles are often
very well defined, and have good contrast in the images. A
search is carried out in a coarse scale of DoG for centrally
located lobes of appropriate size and polarity. Candidate
contours are tested for simple symmetry with respect to the
vertical axis. Any found, are used to seed a coarse-to-fine
track (see Appendix) through successively finer ZC images
(Figure 6).

This cue is fairly robust against scale, and in our experience
to date any mid-range filter can be used.

(3) Identification of the cortical surface. Preliminary
experiments showed that the cortical surface is usually
associated with ZCs in DoG,se scale images.The local-
connected ZCs from the DoG are first normalised relative to
the scalp outline (this causes the cortical surface, to lie at a
roughly constant distance from the scalp centre). Lines lying
at least partly within a radius of between 0.7-0.9 units in the
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normalised coordinate system are extracted as candidates for
the cortical surface. Large lines are extracted and low radius
breaks joined up if they are unambiguous. The resulting set of
lines is compared on a number of criteria, including size,
centre of gravity relative to the scalp centre, and simple
topological relationships.

Figure 7. Example of cortical boundary, as traced by the
ZCs; regions labeled as gyri are shown darker and
sulci lighter.

The cortex appears as two separate hemispheres in higher
brain slices above the corpus callosum. This algorithm has
proved robust enough to identify the cortical boundary in
over 30 images from two sources.

(4) Identification of the major sulci and gyri. Having
identified the cortical surface, the function S(0) is calculated,
where 8 is the angle subtended at the scalp centre.

S is the value of the intrinsic parameter (the ordinal position
along the connected contour) as a function of 0, at points on
the contour furthest from the centre of the scalp. S varies
continuously along the tangential parts of the cortical surface,
indicating gyri. Where a concavity occurs, which might
possibly indicate the presence of a sulcus, the S function
changes abruptly. S is differentiated, and peaks above fixed-
threshold are selected as candidate sulci. Conversely, the
places where the S pointer runs in sequence are labeled as
gyri, selected as the connected sequence lying between
adjacent sulci. The position of a sulcus is given by the 6
values of the end points of the discontinuities in S. Its extent
is recovered as the connected line lying between pointers into
the original cortex surface. Figure 8 shows an example of the
recovered cortical description.

(5) Identification of the inter-hemispheric fissure. Sulci lying
close to the mid-line of the scalp outline are taken as
candidates for the inter-hemispheric fissure.

In experiments to date this has been unambiguous. The exact
location and form of the fissure is localised more precisely,
by tracking into finer scales using the same techniques used
in refining ventricle positions (See Figure 9).



Figure 8. Right-hemisphere gyri recovered separately in 10
slices; note the regions labeled as sulci have been
left as gaps, which are often consistent between
slices.

MODEL INSTANTIATION

The identification of the major landmarks in the images
establishes a coordinate frame for quantitative geometrical
relationships, and allows a partial instantiation of the
anatomical model. The emerging interpretation of the image
makes it possible to seck further image details indicating
anatomical structures which are less conspicuous, or whose
geometry is more difficult to characterise.

The concavities in the line deemed to be the cortical surface
provide initial estimates of the positions of the major sulci
and gyri. Figure 10 represents a section of the hemisphere on
the right of Figures 1 & 7, as if viewed from the right. The
ordinate corresponds to 22 slices (from images spaced with 2
mm separation. The abscissa shows orientation around the
brain centre, +45 degrees around the right lateral axis. Each
vertical bar show the position and extent of a sulcus as
identified by the above recognition rules. In effect the
diagram simulates a view of a piece of the cortical surface
visible from the right, as it has been interpreted by the system.

|5

Figure 9. Coarse-to-fine tracking of the rear portion of the
inter-hemispheric fissure.

There are obvious regularities in Figure 10. The “sulci” do
tend to run in lines, and the gaps between sulci (gyri) do form
coherent regions. However visual comparison with the
original data shows that there are many errors. Sulci may be
missed, usually due to a disconnection between ZCs which
identified the cortical surface and the visible sulcus. Failures
also arise due to the cortical line becoming attached to image
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features in the skull; this proved particularly troublesome in
some slices. An example can be seen in Figure 7 where such
an event occur at the top and bottom-right of the image. We
believe that fairly simple improvements to the recognition
rules will eliminate many of these errors. In particular the
potential for using deformable models to overcome such
problems is being studied (Karaolani et al (1989), Sullivan et
al (1990)).

The identification of consistent runs of sulci in Figure 10
raises the problem of finding the correspondences between
slices. Attributes of competing sulci, already available in the
representation such as maximum depth, length and principal
orientations, may be used as criteria for matching. The
coarse-to-fine algorithm can also be adapted to correlate
image features in adjacent slices.

Work is currently directed towards grouping together
extended “sulcus” features, and to establish recognition rules
which allow candidates for the major cortical features to be
instantiated in the anatomical model.

On the supero-lateral part of the hemisphere, illustrated in
Figure 3, the most reliable features are the pre-central gyrus,
the central sulcus and the post-central gyrus. Candidate image
features will be used to create hypothetical matches to model
nodes, ie, new viewpoints. Viewpoints which can be
combined so that topographical relationships between
elements that are consistant with the model (see Figure 4) will
survive, When the more distinctive model features have been
matched to image features, attempts can be made to
instantiate adjacent model elements by searching the parts of
the image indicated by the topographical relationship coded
in the model.

DISCUSSION

Experiment have been carried out on the use of multiple
scales of analysis for locating and labelling cerebral
structures. The most conspicuous features - such as the scalp
and the ventricles can successfully be found, using fairly
simple context-free feature-extraction methods, combined
with simple recognition rules. These landmarks are used to
instantiate a symbolic anatomical model. This makes
available higher-level knowledge to assist further image
processing. The rules rely on specialised heuristics and
opportunistic reasoning.
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Figure 10. The position and angular extent of the cortical
sulci recovered from a sequence of 22 MR
images, shown in the form of a side view of the
“unfolded” cortical surface.



This task domain of MR cranial images is particularly
difficult for a number of reasons, especially the variety of
shapes of the cortex within ‘normal’ brains. The delineation
of the soft tissue from the surrounding cerebral-spinal fluid
(CSF), scalp, fat and bone also presents significant problems,
It is fairly common practice to outline the structures in such
images by hand. However this operation is very poorly
controlled, since it is difficult for the human operator to
maintain a consistent criterion for the task. The use of high
level anatomical models makes possible computer assistance
in this process and in time may allow autonomous
interpretation of medical images, and the registration of
images from different modalities.

The use of DoG images is convenient, but non-ideal. High-
contrast contours can reliably be found as ZCs in well-chosen
scales, and these can then be tracked into finer scales (see
Appendix). However, structures such as the cortical folds
have compound edges, as two grey-matter “sheets” come into
contact with each other, sometimes with traces of darker CSF
in between. This information is not well represented in any
single scale DoG. The image information is however present
and can easily be reconstructed from DoG images (Sullivan
& Baker, 1980) but richer representations of the image using
hierarchical descriptions may be required (Rosin et al, 1990).

REFERENCES

Arcelli, C. “Pattern thinning by contour tracing”. Comp.
Graph. & Im. Proc. 17, pp. 130-144 (1981).

Hawkes, D.J. Hill, D.L.G. Lehmann, E.D. Robinson, G.P.
Maisey, M.N & Colchester, A.C.F. “Preliminary Work
on the Interpretation of SPECT Images with the Aid of
Registered MR Images and an MR Derived 3D Neuro-
anatomical Atlas”. 3D Imaging in Medicine: Algorithms,
Systems, Applications. pp.241-251. (Ed: Hone, K.H.
Fuchs, H. & Pizer, S.M., Springer-Verlag, (1990)

Karaolani, P. Sullivan, G.D. Baker, K.D. & Baines, M.]J.
“A Finite Element Method for Deformable Models”.
Proc. 5th. Alvey Vision Conf. Univ. of. Reading.
England. (1989).

Mowforth, P.H. & Zhengping, J. “Model-based Tissue
Differentiation in MR Brain Images”. Proc. 5th. Alvey
Vision Conf. Univ. of. Reading. England. (1989).

Niemann, K. Keyserlingk, D.G. & Wasel, J.
“Superimposition of an Average Three-dimensional
pattern of Brain Structure on CT scans”. Acta.
Neurochirurgica, 93, pp. 61-67, (1988).

Rosin, P.L. Colchester, A.C.F. & Hawkes, D.J. “Early
Visual Representation Using Regions Defined By
Maximum Gradient Profiles Between Singular Points”.
IPMI, Proc. XIth. Int. Meeting, Berkeley, Calif. (D.
Ortendahl, ed), Wiley: New York. (1990).

Sullivan, G.D. & Baker, K.D. “Multiple Bandpass Filters in
Image Processing”.IEE Proc.127(E),pp.173-184, (1980).

Sullivan, G.D. Worrall, A.D. Hockney, R.W. & Baker,
K.D. “Active Contours in Medical Image Processing
using a Networked SIMD Array Processor” Proc.
BMVC Oxford, England (1990) (These proceedings).

Acknowledgments

This research was supported by Alvey project MMI-134
“Model-based Interpretation of Radiological Images”. We
would also like to thank the following for their help in this
work; Guy’s Hospital MR Unit, M. Graves & D. Hawkes.

ART™ is the registered trademark of Inference Corporation.

APPENDIX

Coarse-to-fine tracking of zero-crossings

A connected contour (A) in a DoG-filtered image at one scale
(D,) is related to a set of contours (B) in the next finer scale
(D), by the following algorithm (Scales are 1/2 or 1 octave
apart, dependant on image quality).

(1) Expand A by a disc of radius 1.4c, (where 6,is the
value of the +ve sigma in D,), to form a mask.

(2) Find all contours in D, intersecting with the mask
(the set: I).

(3) Any curve in I which is closed is accepted in B

(4) Free ends on open contours in I are examined to
complete loops which lie outside the mask. Free
ends in I which can be connected in D, to a second
free end in I (possibly the other end of the same
contour) are identified. Any single contour in D, of
length less than 3g, which links a pair of open ends
in I is unioned with 1.

(5) Steps 3 & 4 are repeated until stable, then all
remaining contours in I are included in B.

Rule 4 allow loops to be completed, and contours to break
into two closed forms (e.g. Figure 5).

The constants in rules 1 & 4 which control the mask width
and permitted loop extensions have been determined
empirically. They are related to the expected “slew” of an
edge between scales, and the minimum curvature within a
scale. Application specific heuristics must still be applied to
cover the behaviour of ZCs in scalespace, for example, when
tracking objects which are known to break into closed forms
the 3o, criteria in rule 4 must be supplemented with another
criteria; that a contour in D, that links ends in I but is greater
than 3g, in length, may be used if it is interior to the boundary
of A, i.e. the contour is splitting.



