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determine the ego-motion and for this we combine the
transformation estimation suggested by Faugeras [1]
with the data weighting method suggested by Kiang
[4]. Once the camera motion is determined it is pos-
sible to combine positional information of each
feature to increase their localisation accuracy.

A system has been developed for integrating informa-
tion from sequences of stereo images suitable for use
in visual control. The method exploits multiple
sources of information to obtain a subset of correctly
matched corner features in temporal pairs of stereo
images. These have been used to determine the ego-
motion of a stereo camera system and to improve
position estimates of these features. The algorithm is
demonstrated on images of a real scene which would
be expected to present stereo or temporal matching
algorithms with matching difficulties.

We are constructing a mobile vision platform
COMODE with which we intend to address
difficulties of visual guidance and path planning.
Although information is available from the position of
wheels at the front of this vehicle it cannot be relied
upon to deliver accurate motion estimates for the
moving vehicle. We intend to use stereo vision to
compute a more accurate estimate of the motion of
the vehicle suitable for closed loop control. For this
we have combined several established vision algo-
rithms to construct a system which can provide an
estimate of ego-motion while maintaining a 3D point
based world model.

A system we have developed uses a corner
detector [6,1] to obtain well located features in 3D
(but see also [7]). Corners are first matched in stereo
to obtain positional information which is used to help
temporal matching across pairs of images.

Determination of camera motion has been
reported by many authors [1,2,5] and a feature funda-
mental to the success of these methods is the determi-
nation of a correctly matched set of correspondences.
There are methods for protecting such methods from
outliers caused by a small fraction of incorrect
matches, but it is necessary to ensure that this fraction
is not exceeded. We describe in this paper a corner
matching algorithm which identifies those matches
which are likely to be incorrect. A subset of
correctly matched points are selected using a reliabil-
ity heuristic or by exploiting the redundancy in the
information available. These data can then be used to

1. Stereo/Temporal Matching

The corner detector we use is that suggested by
Harris and Stephens [3] which calculates an interest
operator defined according to an auto-correlation of
local patches of the image.

(dl/du)2*w dl/du dl/dv*w

dl/du dl/dv*w (dl/dv)2*w

where u and v are image coordinates and *w implies
a convolution with a gaussian image mask. Any
function of the eigenvalues a and P of the matrix M
will have the property of rotation in variance. What is
found is that the trace of the matrix Tr{M) = a+p is
large where there is an edge in the image and the
determinant Det(M) = 0$ is large where there is an
edge or a corner. Thus edges are given when either
a or p are large and corners can be identified where
both are large. Corner strength is defined as

Cuv = Det{M) - kTr(M)2

Corners are identified as local maxima in corner
strength which are fitted to a two dimensional qua-
dratic in order to improve positional accuracy which
has been estimated as 0.3 pixels (Thacker & Mayhew
[8]).

Image tokens can be matched in some cases
using the following heuristics;

(a) restricted search strategies (eg epipolars in the
case of stereo).

(b) local image properties (eg image correlation).

(c) uniqueness.

(d) disparity gradient ( or smoothness ) constraints.

For stereo matching potential matches are
sought in a variable epipolar band, with a width
determined by the accuracy of stereo calibration. As
the corner detector finds local maxima in an auto-
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correlation measure it makes sense to compare possi-
ble matches between points on the basis of local
image cross correlation. Lists of possible matches are
generated, for corners in the left image to the right
and right to left, and ordered in terms of the local
image correlation measure;

M = J A"2 wuv IuJ'm du dv K

with

= j w,jlv du dv j WuJ'm du dv

where w is a gaussian weighting function. This meas-
ure varies between 0 and 1 (close to 1 for good
agreement), again the assumption has been made that
there is little rotation about the viewing axis. This
measure is invariant to the scale of the registered
image intensity ( assuming that no prior knowledge of
the lighting conditions and individual camera aperture
settings is available). Weak dependence on the abso-
lute image intensity can be reintroduced using an
asymmetry cut on the relative comer strength.

- C2\
>T\

A value of 0.85 is generally chosen for r\, this will
allow a difference of 12 in relative corner strength or
a factor of 1.8 in image intensity.

Only if the absolute value of the correlation
measure is high ( Mmax>p) is the match accepted and
added to the list of possible matches, p can be set
arbitrarily high to ensure that the underlying images
are essentially identical and a value of 0.99 is gen-
erally used. We accept that this will inevitably result
in some bias in matching ability for front-to-parallel
surfaces. Candidate matches are only considered
further if they involve the best correlation measure
Mmax found for that pair of points matched both ways
between the left and right images. This algorithm
implicitly enforces one to one matching and also
eliminates incorrect matches resulting when a feature
has only been detected in one image.

Due to the sparseness of corner data in many
regions of an image it is difficult to impose a smooth-
ness or disparity gradient constraint. However, it may
be possible in future to constrain possible matching
using the results from less sparse matching primatives
such as edges.

On real images corner detection can be very
noisy and setting a generic threshold for corner detec-
tion is problematic. Also high frequency textured

regions generally give rise to many corners which, on
the basis of the above heuristics, are unmatchable, as
there are many similar candidate matches for each
feature. Thus in real images it is difficult to automate
the generation of a reliable set of correspondences,
potentially preventing successful ego-motion calcula-
tion. What is required is a method of identifying
those features which may be unreliably matched.

Unreliable features can be defined as those
which have many candidate matches and consequently
may be expected to be ambiguously matched. Ambi-
guous matches can be excluded by selecting matches
where neither list of other candidate matches has an
entry which is above a value of Afmax-8. The required
value of 8 is defined by the expected variability of the
cross-correlation value for correct matches and can be
expected to be relatively constant for all images. 8
can be defined so that only very unique matches are
accepted as good, a value of 0.005 has been found
generally to be sufficient Such a reliability heuristic
reduces the consequence of changing feature detection
thresholds on the matching of high frequency features
and so allows these thresholds to be lowered. We
have successfully used this stereo matching algorithm
to provide data for camera calibration ( Thacker &
Mayhew [8]). If we have temporal match informa-
tion, a more direct method of selecting reliable
matches can be used, as explained below.

Temporal matches are sought using three
dimensional positions of corner features combined
with odometry information specifying the expected
motion of COMODE. Match lists are generated
between temporal pairs of images in exactly the same
way as for the stereo matcher. The result is a set of
possible matching lists for each point in each image
to its stereo and temporal counterpart. A subset of
correct matches is then selected by checking that the
matching between all sets of stereo and temporal
images is consistent.

2. Motion Parameter Extraction

After 3D feature point extraction and correspon-
dence processes are completed, motion parameters
can be estimated using the corresponding 3D feature
points. Consider a set of N feature points extracted
from two stereo images taken at time t\ and t2,
denoted as {pi, ..., pN) and {p^, ..., p'N} respectively.
The motion between them is defined by the motion
equation

p', = Rpi + T + e,, t=l, ..., N (2.1)

where R and T are the rotation matrix and translation
vector, e, is the isotropic error vector associated with
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the measurements p', and p,. The obvious way of
finding R and T is to use the least squares algorithm
to minimise the cost function

S = 2>ie,- ' (2.2)

However, associated with each calculated 3D position,
there is always a triangulation uncertainty arising
from the limitations imposed by the camera resolu-
tion, and this uncertainty grows with distance to the
camera. Hence the above cost function is modified by
multiplying each term by a weighting factor w,- to
yield

S = £ w,(p', - Rpi - T)'(p'i - J?p,- - T) (2.3)
t=i

There are various ways of calculating the weighting
factors. Moravec [6] modelled the position uncertainty
as inversely proportional to the distance from the
camera. Kiang et al [4] have shown that such an
approximation is not adequate as far as the triangula-
tion error is concerned. Instead they proposed model-
ling the triangulation uncertainty as a ID model
which is determined by the geometric properties of
the stereo configuration [Appendix I]. Such error
modelling has been adapted here in calculating the
weighting factors. Thus the task is to search for R
and T which will minimise the cost function (2.3).
The solution for this can be obtained [Appendix II]
from

min S =
R

w.lln- w - fln, J\z

and

f=p'w-Rpw

(2.4)

(2.5)

This optimisation problem, as it is stated, is nonlinear
due to the rotation matrix R. Equation (2.4) differs
by only the weighting term H>, to the cost function
obtained by Faugeras [1] which was solved in a
linear manner by reparameterising the rotation as a
quaternion. We can still do that here and the optimal
quaternion q is found by solving

min q'Awq
q

(2.6)

under the condition q'q - 1. Aw is a symmetric posi-
tive definite matrix calculated from n,w, niw and vv;.
The solution q is the eigenvector of unit length of
matrix Aw corresponding to the smallest eigenvalue.

The motion parameters thus obtained are
optimal in the sense of least squares provided the
measurement errors are independent isotropic Gaus-
sian vectors. Unfortunately in the case of position
estimates from stereo this is clearly untrue as depth
errors dominate. However, results have shown that
by applying weighting in the solution for such data ,
the estimates of R and T are reliable.

Under the assumption of ego-motion, if the
estimated motion parameters are accurate enough, a
transformed feature point at time tx should lie in the
vicinity of its corresponding feature point at t2. A
discrepancy is expected because of measurement
errors and parameter estimation errors. However if
this discrepancy is unreasonably large for a small sub-
set of the extracted feature points, it is very likely
that either the ego-motion assumption is incorrect or
the 3D position estimates for those points are subject
to anomalous large errors. Such errors may corrupt
the estimates of the motion parameters, therefore
these points should be excluded from motion estima-
tion process. This can be done by iterative removal
of those points which are not consistent with the
transformation according to their noise model, which,
as mentioned in section 2, is related to the depth of
the point.

After eliminating wild points, we have, at time
t2, a set of measured 3D feature points and a
corresponding set of the same feature points
{Pisroj, •••> PN,proj} projected to t2 from t{ using the
estimated motion parameters. Better estimates of the
true positions of those feature points can now be
obtained by combining the above two sets according
to their covariances.

3. Results

The results from a stereo match of sets of
corners from two stereo images are shown in Figure
1. It should be noticed that many corners have been
identified in the image due to the high frequency tex-
ture of the carpet. Many of these are not even reli-
ably identified as they approach the threshold for
corner detection. Raising this threshold to remove all
corner points in the carpet removes nearly all corners
in the image. We could not expect to unambiguously
match this region of the image using the heuristics
identified in part 1. However, the uniqueness heuristic
has reduced the set of possible matches to those
which would be expected to be reliable. Temporal
matches are sought and a set of consistent matches
are identified in an eight way matching process
between the four images. The set of data is restricted
by the efficiency of the corner detection and matching
algorithms leaving typically only 50% of the number
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of matched stereo comers (Figure 2). These few
remaining matches can however be used for reliable
ego-motion determination using the weighted least
squares method.
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Figure 1. The figure shows the generation of 3D data
(c) from raw image (a)through corner detection and
matching (b). Notice the large number of noisy
corners detected, particularly on the carpet. These
have not been matched due to the reliability con-
straint, the corners that have been matched involve
only a few false matches.

Figure 2. This figure shows raw data (a), stereo
matched corners (b) and finally 3D data with the
reconstructed transformation obtained from temporal
matches (line segments)(c). These temporal matches
are found to be very reliable for ego-motion calcula-
tion.

4. Conclusion

We have descibed a matching algorithm for
stereo and temporal corner matching. This algorithm
uses reliability constraints to identify those features
which may be used for ego-motion determination.
The algorithm is robust and can be used to obtain
correspondances on arbitrary sets of images without
undue parameter tuning. The method is suitable for
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between-frame estimates of transformation and there-
fore useful for maintaining temporal coherence across
sequences of scenes and for closing the motion con-
trol loop with visual feedback. The limit of applica-
bility of this system would be due to the extent to
which the rigidity assumption underlying this method
was justified in the real world. Reliable motion esti-
mates over long time scales may require knowledge
of which objects in the world may be expected to be
stationary. In this respect beacon tracking [7] has par-
ticular advantages and we intend to use the work
described here in a comparative study, of the relative
accuracy and merits of these methods, with a view
towards system integration.
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Appendix I. Weighting Factor Calculation

The weighting factor for each 3D feature point
should be related to the 3D error model of the feature
point. The uncertainty about a 3D point is mostly
contributed by the uncertainty in the direction aligned
with the line of sight to the point. Based on this
observation, Kiang et al [4] constructed the error
model for each 3D point as a ID line segment. By
denoting P as a nonlinear mapping which maps a 2D
point with disparity into a 3D point, i.e.,

P: (i, j , d) -> (x, y, z) (Al.l)

the two end points of the line segment of the point
P(i, j , d) are defined as

Hence given two sets of 3D feature points
corresponding to each other, the weighting factor w; is
denned as

1
: + WPfri ~ Pclj'W

(A1.4)

A modification on calculating the line segment
can be made due to the fact that image feature points
and disparities are obtained to sub-pixel acuity, thus
eq.s(A1.2) and (A1.3) can be modified yielding

P(i,j, d-a) + Pji-a, j , d-a)
2

(A1.5)

, j , d+a)
p i =

where a is the standard deviation of the error associ-
ated with each 2D feature point and disparity calcula-
tions and is usually less than unity.

Appendix II

To summarise the optimisation procedure,
define weighted centroids as

N N N N

and let

n i > = P. ~ Pw . n i> = Pi' - Pw

Then R and T are given by

min 5 =
R,T

=

^

min
R,T

min
R,T

N

i=l

(llp^, - Rpw -

>v;llnJjW — Riiiw\

»,- - 71I 2

N

n i 2 ^ w;

II2)

because = 0.£ ; , w ^ ; ; A s in the
unweighted version of this algorithm [1] the first term
can be set to zero for any rotation R using

f = p'w - Rpw

which is the least squares optimal estimate of T.
Thus the total expression can be minimised simply by
minimising the second term with respect to R.
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