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This paper investigates the theoretical limits of proba-
bilistic relazation labeling (PRL), applied to per-pizel
contertual tmage classification. The performance of a
scheme which is defined to be optimal (within a class
of PRL schemes) is studied, and found to fall short of
that theoretically obtainable by directly considering all
the original a posteriori probabilities (PPs) in the im-
age. It is also found that an optimal scheme must use
different updating functions at each iteration, and that
these functions will depend on the distributions of the
original per-pizel data.

An estimation based implementation of the optimal
scheme — termed ‘irained probabilistic relazation’
(TPR) is then described, which, in spite of it’s the-
oretical limilations, has a number of commendable
characteristics.  Experimental results are presented.

We are concerned with the problem of obtaining a per-
pixel classification of an image, such as is common in
remote sensing where a land-use thematic map is to be
automatically derived from multispectral data. Anoth-
er example is the labeling of ‘edge’ pixels as the first
stage of a machine vision system. It is widely accepted
that classification results can be considerably improved
when contextual information around a pixel is taken in-
to account, that is, when the classification of each pixel
is influenced by pixels at a (possibly considerable) dis-
tance from the one in question.

To fix notation, assume that with each pixel i is as-
sociated the random variables Y; and X;, representing
the pixel’s true class (or label) and data respectively.
Realizations of Y; and X; for a particular image will be
written y; and z; respectively. For example, in a remote
sensing context, each y; might take on values from the
set ® = {forest, water, other}, with z; a vector repre-

senting the measured intensities in a number of spectral
bands.

Given a suitable image with a pre-classified training
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overlay, many methods exist for estimating the class-
conditional distributions of the image pixel data — ie
d(X|Y=a) for each o in ®, and the class prior proba-
bility vector D(Y). Here d indicates a density function
over the uninstatiated random variable (X), and D a
probability vector. Note that the subscripts may be
dropped since we assume the image to exhibit station-
ary (ie shift independent) statistics. Once these dis-
tributions have been estimated it is a straightforward
matter to assign an initial a posterior: probability vec-
tor q?,q? = D(Y;|Yi=yi) to each pixel in subsequent
images.

Probabilistic relaxation labeling (PRL) is a means of
iteratively updating these initial probability vectors in
the light of contextual evidence from neighbours. PRL
alms to generate PPs conditioned on a larger window of
data and so minimize the proportion of pixels misclas-
sified by a maximum a posteriori probability (MAP)
classifier by combining the PPs from the central pixel
and (say) its 4-connected neighbours. This new PP can
be called q, ie:

1

qQc = f(q((}:sqghqquos;qgv)

where the subscript C,N,S,E,W stand for Centre, North,
South etc. A variety of updating functions have been
proposed (see [5] for a review), and it is typical to re-
apply the same function in an iterative fashion so that
at the kth iteration we have:
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In the following two sections we investigate the per-
formance limits of this scheme; proofs of theorems are
outlined only — see [9] for full details.

The incrementally optimal updat-
ing (IOU) scheme — g'...g*

Much of the theoretical analysis to follow is formal-
ly limited to one-dimensional “images”; arguments are
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given in [9] which leave little doubt that the results will
also be valid in higher dimensions.

In the 1-D situation, a pixel has only two neighbours,

one to the left and one to the right. This is shown in
a fig. 1. At the kth iteration, a function, gk, of
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Figure 1: Incrementally optimal updating

three-PPs, generates the new PP for each pixel. The
PP vectors, at pixel 7, resulting from the first, second,
third etc iteration of IOU are written q!,q?,q?, etc,
with associated random variables Q},Q?, Q3. Tradi-
tionally, the update function is identical for each itera-
tion (g* = g! Vk), but we wish to relax this constraint
and investigate the performance of a tailored sequence
of updating functions — g', g2...g*. So that:

k
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We require g* to generate an honest (see [2]) probability
vector, and further that it should be fully refined on the
available information. It thus follows that we should
define:

k
g (af_1,af,af41) =

D(Y;|Q_ =a%_1, QF=q}, Q},1=d%,) (1)

as is shown in the figure. A similar formulation is adopt-
ed by Peleg [7].

To say that equation 1 defines an optimal updating
function is something of a truism; note for example,
that it is true independently of the assumed image
model, ie it holds regardless of whether the data is
class-conditionally independent, or the labels exhibit
the Markov property. Even if there is texture present,
it is still optimal amongst PRL schemes, though the
optimum will be a poor one. Note that one may al-
ways take equation 1 literally (and analogously for 2D
images) and, given sufficient training data, directly es-
timate the given conditional probability. This will be
taken up in shortly.
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Theoretical analysis of IOU

The incrementally optimal updating scheme has been
defined to be optimal — ie a sequence of updating func-
tions tailored to a given image model and iteration, de-
livering the a posteriori class estimate given the local
neighbourhood of current PPs. Since the IOU scheme
is definitively optimal, anything it cannot achieve can-
not be achieved by any PRL scheme.

The analysis to be presented is based on the “tooth-
comb model” which is described below. Although no
closed-form expression has been obtained for the up-
dating functions, even under this restricted model, a
number of useful theorems have been developed, and
these are presented in the following sub-sections.

The tooth-comb model

This is a simple 1-D model in which the data at each
pixel is statistically independent from other pixels giv-
en their class, and the contextual dependence between
pixel classes may be modeled by a first-order Markov
chain. Y; are the class (random) variables, and X; are
the associated pixel data. The qualitative aspects of the
model may be specified as follows: !

o XilIX;|Y: Vi,j:
pendence (CCI));
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(class-conditional inde-

o Yi[IY;|(Yi-1,Yig1) Vi, j:
property).

1#£j (the Markov

and in fact these two statements completely specify the
qualitative aspects of the model.

An instance of the model requires the following to be
quantified:

e the set of classes — & = {1..m};
D(Y;);
e the transition probabilities — D(Y;41]Y;);

e the class priors —

e the class-conditional density  distributions

d(X;|Yi=a) for each « in ®.

Realizations of Y; and X; are written as y; and z; re-
spectively. Often, the event X;=z; is abbreviated to
simply z;.

1AUB|C reads as ‘A is independent of B given C', or ‘Once
we know C, B tells us nothing more about A (or A about B)’



Single-stage, w-reaching context functions — F"

The benchmark against which any context exploiting
scheme may be judged is the function which returns the
a posteriori probability w.r.t class, given the original
per-pixel PPs in as large a window as required. For the
tooth-comb model this leads to a family of functions
defined as follows:

def
FU(q_y - Q) =

D(Yilq?—w i 'Q?-}w) (2)

Thus for example, F! is a function of three PPs and
F? a function of 5 PPs. For the tooth-comb model,
FY has a tractable algebraic form which we omit here.
For the 2-D case, F* may be defined analogously, but
to the author’s knowledge, no closed form expression is
possible without simplifying the model.

Note that F! is identical to g! by definition.

Do per-pixel PPs preserve all relevant informa-
tion?

The first stage of any PRL scheme is to generate the
a posteriori probability vector for each pixel i given its
data, ie q? def D(Yi|zi). Once this has been done, the
data z;, will not be used again. We would like to know,
therefore, whether this transformation from data to PPs
discards any information which might be relevant to a
subsequent pixel-centred classification. Intuitively we
are asking “Could I make as good an estimate of class
for each pixel if allowed to see only the PPs for the whole
image, as I could if I were allowed to see the original
data for the whole image?”. In fact we can assert the
following:

Theorem 1 When the pizel data is class-conditionally
independent, all information relevant to classification is
retained by the per-pizel PPs, ie, for any w,

X; ]_L.-;j X;|Y; =

D(Yi|#i-w--tiaa)= DU[duiahw) 3)

The  proof simply involves showing  that
D(Yi|¢i—w ... Ziyw) can be expressed as a function of
Q_y - - - qf4, Which does not depend on z;_y, ... Zitw;
clearly the function must be F*. This result assures us
that having replaced all the zs with q% we still have a
chance of finding D(Y;|z;—y ... 2i+y) for any w.
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Does the IOU scheme match a one-stage func-
tion?

We would like to know whether the sequential applica-
tion of the IOU functions can achieve equivalent results
to the single stage context function defined above. In
fact the answer is in the negative, at least for two iter-
ations:

Theorem 2 F? # g2 g!.

2 As has been mentioned, g! is simply F!, so the proof
requires it to be shown that g! has discarded informa-
tion relevant to the computation of F2. This will hap-
pen if two or more combinations of q?_z e q?+2 values
map onto the same combination of q;_; ... q;,, values
but to a different value under F?; then clearly no g°
function could be found to satisfy the identity. The me-
chanics of this proof require a considerable amount of
algebraic manipulation and this was carried out with

the aid of the computer algebra system REDUCE [10].

The implication of this result is that no PRL updat-
ing function exists that after two iterations, achieves a
probabilistic assessment which is as good as could be
achieved by an assessment based on the original data
(or, by theorem 1 on the initial per-pixel PPs).

Do the IOU functions depend on the distribu-
tions of the original data?

The updating functions g', g? etc will clearly depend
strongly on factors associated with the spatial layout
of the classes (the transition probabilities in the tooth-
comb model), but intuitively we do not expect the func-
tions to depend on the class conditional distributions of
the original data — ie on d(X;|Y;=a). Our intuition
is supported by the fact that g! ( = F!) did not so
depend; but what of g? and beyond?

Theorem 3 The 10U function for the second iteration
— g? depends on the class-conditional distributions of
the data for the tooth-comb model.

The reader is refered to [9] for the proof. This result
makes it clear that any attempt to find a closed-form
expression for g2 will be greatly complicated by the in-
volvement of the data distributions. Put another way,
a second stage updating function which is optimal for a
particular model instantiation, will not be optimal if the
data distributions are changed even though the spatial
(contextual) layout of the classes remain unchanged.

2The notation g2.g! indicates the application g! followed by
g2, ie g2.81(a,b,c,d,¢) =" g2(g'(a,b,¢), g (b,c,d), g (c,d, )



What of iterating F1?

A corollary of theorem 3 is that g? cannot in general
be equivalent to F'!. This follows from the the fact that
F! is known not to depend on the data distribution-
s. It is demonstrated empirically in [9] that the effect
of iteratively applying F! is to produce PPs which are
optimistic; that is, the components of the computed
PPs rapidly converge to zero or one indicating a high
degree of confidance in the MAP classification which
is not born out by the achieved classification accuracy.
Further, it is also shown that the achieved accuracy is

inferior to that obtained by using the correct sequence
of IOU functions.

Trained probabilistic relaxation

(TPR)

Trained probabilistic relaxation is the name given by
the author to a practical implementation of the IOU
scheme. TPR involves directly estimating the distribu-
tion D(Yc[q'é,qfv,qg,q’g,qfv) from training data. A
pre-requisite of TPR is the existence of a trainable per-
pixel classifier, which generates honest PPs conditioned
on the five pixels of a four-connected neighbourhood.
There are many ways that such a classifier could be
constructed (for example the kth nearest neighbour or
parzen estimator — see eg [3]) — the system developed
by the author involves the growing of a probability tree,
and is summarized in the following sub-section; for a full
description see [8] or [9].

The “Lapwing” classifier system

The system extracts a pattern vector for each pixel de-
rived from the pixel data within a local niegbourhood.
The size of the window may take on various sizes and
shapes — from just the central pixel (whence it may be
used to derive initial per-pixel PPs) up toa 9 x 9 square.
During training, the system produces a probabilily iree;
each non-terminal node of the tree representing a split
in the pattern space. The splits are limited to hyper-
planes, but can be in any orientation and are selected
on the basis of two main criteria:

e purily w.r.t pattern class in the two sub-spaces;

e robustness of the split, that is, the extent to which
the partitioning hyperplane avoids passing through
regions of high sample density.

These criteria are combined to form a single cost func-
tion whose optimization is managed by a genetic algo-
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rithm (see eg [4]). Splitting is continued until a node is
either pure, or contains fewer than a preset number of
representatives from any class.

The resulting probability tree thus represents a hierar-
chical partition of the pattern space; inside each parti-
tion the class conditional pattern density is assumed to
be constant and thus the a posterior: probability vector
for any point in that region may be determined directly
from the normalized ratio by class of the sample mem-
bers which fall into the region.

Once the tree has been grown it is pruned with reference
to an independent validation sample. The technique
is known as minimum cost-complezity pruning and is
described in [1]. In essence, the pruning process has
the effect of removing splits where either of the two
sub-regions have captured too few sample members, or
where the class-conditional densities on either side of
the split are similar and so the split achieves little.

Tr. Tr. Val. Val. Test
Ov'lay| |Image Ov’'lay| |Image Image
O |
PP
Assign't
¥
Test
PP in’
L'y
PP
( Assign‘l)
3 ¥
Tr. Val. Test
PP im' PP im' PP in
Voo i !
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Figure 2: Trained probabilistic relaxation (TPR)

Figure 2 shows the overall scheme of TPR. Two example
images with pre-classified training overlays are required
for training and validation; these are indicated as “Tr.
and ‘Val.” in the figure.

The first tree, T, is trained on the original image data
using a neighbourhood involving the central pixel only



3, This tree, after pruning may then be used to generate
a “probability image” from the training and validation
images. For two class problems, a probability image
may be represented by single grey-level image, where
the intensity at the ith pixel is proportionally related
to P(Y;=classl|X;=z;); in general, m — 1 such image
planes are needed, where m is the number of classes.
Thus, the vector quantities q¥ may be represented in a
form identical to the original 1mage data and present-
ed to the classifier’s training phase to generate anoth-
er probability tree — T say. However this tree must
be based on a neighbourhood larger than just the one
pixel, otherwise no new information will be considered
and so identical PPs will always (in principle at least),
be generated. Clearly this process may be repeated to
generate a sequence of classifiers 7%, T2, T2 etc direct-
ly implement the updating functions g', g2, g2 etc. The
initial tree, T implements the function D(Y;|z;). These
classifiers may then be sequentially applied to other sim-
ilar images as shown on the right-hand side of figure 2.

Convergence

A problem with many PRL updating schemes is know-
ing when to stop applying them. The problem is signifi-
cant since classification error rates will invariably deteri-
orate after a few applications. This stems from the fact
that, after the first iteration at least, they loose their
theoretical basis [6] and so no longer generate genuine
(honest) probabilities. In theory, this is not a problem
for the IOU scheme ~ from its definition, the error rate
(over a representative sample) can never get worse, al-
though convergence of the pixel PPs has not yet been
formally established.

As has been mentioned however, the definition of IOU
functions is a vacuous one and many assumptions and
approximations have had to be added before its practi-
cal realization as TPR.. These fall into two main groups:

1. the training and pruning images are fully represen-
tative of the problem domain;

2. the classifier system used accurately determines the
underlying distributions.

Neither of these will hold precisely, and the former in
particular will become increasingly invalid as the updat-
ing proceeds since the images are required to be repre-
sentative of joint distributions of pixels in larger and
larger regions.

Never-the-less, it has been found in practice that im-
provements continue to be made up to about the fourth

3In fact a larger window can be used at this initial stage to
permit the system to see texture or edge/line features.
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or fifth update, and that after this any deterioration
is only slight; the update functions essentially become
weaker in that they make smaller alterations to the as-
signed PPs.

Experimental results

The test image derives from a texture classification
problem. Figure 3 shows the initial, non-contextual
classification (ie after applying 7°), and the result-
s after 1 and then 4 applications of TPR. The true
scene is also shown. Note that the classifiers were
trained and validated on similar but not identical im-
ages to the ones shown here. The table below shows,
for each stage of TPR, the actual and predicted error
rates. Actual error-rate is obtained by a straightfor-
ward comparison between the true scene classification
and the MAP decision, based on the generated PPs.
Predicted error rate is defined, for the kth iteration, as
Ly 1—maz, ¢f,.100 where gf, is the ath compo-
nent of qf. Note that the above definition does not
require knowledge of the true scene. It is easy to show
that if q¥ are genuine (honest) a posteriori probabil-
ity vectors, then the actual and predicted error rates
should be (statistically) equivalent. Thus, a compari-
son of these two quantities gives a useful indication of
the extent to which probabilistic classifer is producing
honest a posteriori probability vectors.

Initial Ist 2nd  3rd 4th

Actual %error | 38.9 132 75 6.3 6.4

Pred. %error 23.0 11.3 69 56 5.2
Conclusions

This paper has analysed the performance of a defini-
tively optimal probabilistic relaxation labeling scheme,
to produce the following theorems:

e When pixel data is class-conditionally independen-
t, replacing the original data with the per-pixel PP
vectors does not discard any information relevan-
t to subsequent contextual classification. (Theo-
rem 1).

e 10U cannot attain a classification that is equivalent
to a contextual classification based directly on all
the original PPs in the image. (Theorem 2).

e Beyond the first iteration, the IOU functions de-
pend on the data distributions, not only on the pa-
rameters of the Markov field. This makes it clear
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Figure 3: Results

that any attempt to find an expression for these
update-functions would be extremely troublesome.
(Theorem 3).

e The IOU function for the second iteration (and al-
most certainly beyond), is in general, different to
the first.

It has been shown the optimal scheme can be imple-
mented by direct estimation of the required distribu-
tions, however the technique, known as “trained prob-
abilistic relaxation” (TPR) makes only qualified claims
to optimality due to sampling and density estimation
difficulties. TPR has been shown to be highly effective

in practice.
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