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Motion estimation is a very importani problem in dy-
namic scene analysis. Although il is easier lo estimale
molion parameters from 3D data than from 2D images, it
is not trivial since the 3D data we have are almost always
corrupled by noise. This arlicle presenls a comparative
study on molion estimation from 3D line segments. Two
representations of line segmenis and lwo representalions
of rotation are described. With different represenialions
of line segmenis and rolation, a number of methods for
motion estimalion are presented, including the Ertended
Kalman Filler, a general Minimizalion process and the
Singular Value Decomposition. These methods are com-
pared using both synthetic and real dala obiained by a
trinocular stereo. We observe thal the Erlended Kalman
Filter with the rotalion azis representalion of rotalion is
preferable. We nole thatl all methods discussed in this ar-
ticle can be directly applied lo 3D point data.
Keywords: Motion Estimation, Molion from Slereo,
Noisy System, Nonlinear System, Minimization.

Although it is easier to estimate motion parameters from
3D data than from 2D (monocular) images, it is not triv-
ial since the 3D data we have are almost always corrupted
by noise. A number of methods are proposed to combat
the noise. To our knowledge, no work has been carried
out to compare those methods. We believe that this work
is important for researchers working on motion analysis
to choose an appropriate approach based on the efficiency,
accuracy and robustness. In this paper, we present a com-
parative study of different methods of determining motion
from correspondences of 3D line segments. The reader is
referred to [13, 14] for methods to recover 3D line seg-
ment matches. For the problem of determining motion
from 3D point correspondences, the reader is referred to
[5, 10, 8, 3]. [8] presents also a method to determine mo-
tion from planar patches.

The paper is organized as follows. First, two representa-
tions for line segments are presented and the problem we
address is formulated. Second, representations of motion
are described. Third, we show how to estimate motion us-
ing the Extended Kalman Filter, minimization techniques
and an analytical solution. Finally we provide the results
of our comparative study on different methods.

PROBLEM STATEMENT

In this section, we give two representations of line seg-
ments and the transformation of line segments under rigid
motion. Finally, we formalize the problem we should
solve.
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Line segment representations

3D line segments can be reconstructed from stereo [4] or
extracted from range data. A common approach is to
represent a 3D line segment L by its endpoints, noted as
M; and M3. Equivalently, L can be represented by two
vectors (1, m), 1 is the non-normalized direction vector of
L and m, the midpoint of L, that is:
l:MQ‘*Ml, m:(M1+M2)/2 (1)

Besides of the geometric parameters, the uncertainty is
also manipulated in our stereo system. Suppose that W,
and W, are the covariance matrices of M, and M5, respec-
tively, and suppose that M; and M3 are independent, we
can compute the covariance matrix of (1, m) as follows:

WaW
W wiw |, @)

W,EW1 w iw,
which is a 6 x 6 matrix.
We can also represent a 3D line segment by its infinite
supporting line. There are a number of ways to represent
a 3D line, one of which is to represent the line by two
vectors (u,d), where u is its unit direction vector, the
norm of d gives the distance from the origin to the line
and the direction of d is parallel to the normal of the
plane passing the line and the origin (see Figure 1). We
can compute (u,d) from the above representation (1, m).
Indeed, we have:

u=V|[l] and d=uAm=(1Am)/[lf, (3)
where A is the cross product. In reality, m may be any
point on the line. As we see later, we use this representa-
tion to derive an analytical solution of motion.

Wi =

Z A

x

Fig. 1: A 3D line representation
We should point out that segments addressed in this pa-
per are oriented, which is obtained in stereo through the
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information about the intensity contrast.

3D line segment transformation

If a 3D line segment undergoes a rigid displacement
(R,t) and if we use the first representation(see Equa-
tion 1), let (1, m) be the parameters before transformation
and (I',m’), that after transformation, following relations

hold:
I'=Rl and m'=Rm+t. (4)

As we know that a segment can be differently segmented
in successive views and that the direction of segment is
relatively more stable, we insist on having the transformed
segment parallel to the segment in the second view which
yields [1]:

FARI=0 and 'A(m'-Rm-t)=0. (5)
We shall use these two equations to compute the motion
parameters. If we note:

f(p,x) =

Equation 5 becomes‘

f(p,x) =0, (7)
where x = [I',m', 1", m""]' (the superscript * denotes the
transpose of a vector or a matrix) is a 12 dimensional
vector which we call measurement vector and p is one of
the motion parametrizations described below. In filtering
terminology, p is called siate vector. So our problem can
be formulated as follows:

I’ ARI

A (m’ - Rm — t) (6)

Given n measurement vectors: X,Xz, ..
i.e., given a noisy system:
f(p,x;) =0, fori=1,..n,
Recover the motion parameters p.

'Jx!’l:

MOTION REPRESENTATION

Any rigid motion can be uniquely decomposed into a ro-
tation around an axis passing through the origin of the
coordinate system, and a translation. The translation is
supposed after the rotation. A translation can be simply
represented by a 3 dimensional vector t = [t; t, 1;]'. A
rotation can be represented by a 3 x 3 matrix R called
rolation matriz, which is an orthogonal matrix satisfying:

RR' =1 (8)
This representation gives a simple way of representing
a 3D rotation but leads to a high dimensional space of
constraints. Several other representations of rotation are
available [7] and we present here two of them: using the
rotation axis and using a quaternion.

Using the rotation axis

A rotation can be defined as a three dimensional vector
r = [a b ¢]* whose direction is that of the rotation axis
and whose norm is equal to the rotation angle.

For convenience, we note v as the antisymmetric matrix

defined by v. More precisely, if v = [z y 2]', then
0 -z y
V= 2 0 -z (9)
-y T 0

In fact, for any three dimensional vectors u and v, we
have u A v = uv.

The relation between R and r is the following Rodrigues
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formula: N

R = e’ =13 + ()T + g(0)7?, (10)
where § = v/a? + b2 + ¢? is the rotation angle, f(§) = 3¢
and g(f) = =gt
So, the parameter vector p in Equation 7 is in this repre-
sentation a 6 dimensional vector, noted as s:

s=[§].

Using a quaternion

(11)

Quaternions have been found useful in Robotics and Vi-
sion [9]. A quaternion q can be considered as being either
a 4 dimensional vector [Ag A; Ay Ag]* or as a pair (a,v)
where « is a real number equal to Ag, and ~ is the vec-
tor [A; Az Az)'. We define the multiplication x of two
quaternions q and q' as follows:
gxq =(ad -y 4,07 +ad'v+vA9"). (12
The conjugate and the magnitude of a quaternion q are
defined as follows:
q (e, —= (13)
|al q x q (a +71I*,0) = (llall*,0). (14)
A real number z is identified with the quaternion (z,0)
and a 3 dimensional vector v is identified with the quater-
nion (0, v).

A rotation can then be represented by two quaternions
q = (a,4) and —q, with |q|] = 1. The relation between
this representation and the rotation axis one is:
a=cos(8/2) and ~ =sin(8/2)u, (15)
where § = [|r|| and u = r/||r||. Note that there are two
quaternions for one rotation. It is not surprising since
a rotation of angle # around an axis u is the same as a
rotation of angle 27 — @ around the axis —u. Usually,
the rotation angle between two successive views does not
beyond 7, so we can impose that the first element a of
quaternion q must be positive. Thus the mapping be-
tween rotation and quaternion is unique under this new
The relation between R and an unit quaternion q = [Ag,
A1, A2, Ag]' is given as follows:
2(A1Aa 4+ Aohz)
2(A1x2 4+ Agxa) A2 - AT 42 a7 202025 - Ao)g)
2(A123 — AoAz) 2(A223 + AoA1)
The product Rv can be identified as the product of
quaternions:

constraint.
AZ4A2 =222 2(hAg - AgAs)
R = .
2 2 2 2
Ag —AT = Az + A3

Rv=qgxvxq (16)

So, the parameter vector p in Equation 7 is in this repre-
sentation a 7 dimensional vector, noted as s,:

(17)

qu t i

under the constraint ||q|| = 1.

Derivation of rotation matrix

At this point, we have two parametrizations for a rotation.
In this section, we give the first derivatives of the rotation
matrix with respect to each of its parametrizations, which
are used in the methods described below. Specially, let
v = [y vy v4]* be a 3 dimensional vector, we are interested
in computing the derivative of Rv about r and that about
q.



The derivative of Rv about r is:

IR 9) —1£(0) .. , , sin(8) — 20g(6
Ry ) 10}, 00~ 0
—f(0)V + g(0)(—(r A v) + (r.v)Ig — vr'). (18

where f(#) and g(@#) have the same definition as above.
We denote E(R,v), a 3 x 3 matrix for aRv'

The derivative of Rv about q is simpler. Indeed, we have:

d d d d
3R 0 1 2 3
8_"' =| ~dy —-di dv do|, (19)
a dy —d3 —dy d;
where
dg = 2(Aovo — Azvy + Agva),
di = 2(Mvg+ Aav1 + Aava), (20)
dy; = 2(—=Av9+ Ajv; + Agva),
dz = 2(—Azvo — Agv1 + Ayv2).
We denote Q(R,v), a 3 x 4 matrix for a{;ﬂ(.lv

The derivative of f(p, x) (See Equation 7) with respect
to s can be easily computed as follows:

S (%) _ [ FE(R]D) 0 ] @1)
8s | -YE(R,m) -V |’
and the derivative of f(p, x) about s, is:
8f(p.x) _ [ IQR,) 0 ] -
osq |-Terom -F)

The tilde “™ above is defined as in Equation 9.

ESTIMATING MOTION USING
EXTENDED KALMAN FILTER

Kalman Filter is a powerful tool to deal with a linear noisy
system. For details of this filter, the reader is referred to
elsewhere [11].

But Kalman Filter is not directly applicable to our prob-
lem, because Equation 7 is non-linear. So we use the so-
called Extended Kalman Filter [6, 2], that is, we linearize
first Equation 7, then we apply the Kalman Filter on the
linearized system. The linearized system is as follows:

Pi Pi-1; (23)
yi = Mipi+w;, (24)
where af
:_f:[p! lnx)+ pt 1
_ 9k
M; = Bp
w; = Bf, —(xi — X;).

Pi-1 is the current estimation of p before processing the
linearized system, and x; is the current measurement.
The derivative of f(p,x) about p can be computed us-
ing either Equation 21 or Equation 22. What we need to
compute yet is the derivative of f(p,x) with respect to x,
which is the same for both motion parametrizations:

ofwx) _|TR o0  —(R) _ 0
Ix 0 -'R Rm+t-m' T
So, the expectation and the covariance of the new mea-
surement noise w; are easily derived from that of x; as:
€ 8 I 8 ]
Elw;]=0, and W; d=rb[ iwi'l = f f

3x,
where A; is the covariance matrix of x;. If we suppose

(25)

)
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that L; and L} are independent, then:

Wr, 0

An important remark is that when we use the quaternion
to represent the rotation, we have added the constraint
[la]l = 1, i.e., q'q = 1 in Equation 7 as an additional
measurement.

ESTIMATING MOTION USING
MINIMIZATION

We can restate the motion estimation problem as a min-
imization problem, that is:

Given n measurement vectors: Xi,Xz,...,
Recover the motion parameters p so that

Z[f(p,

is mmmuzed

xﬂ!

pixi)]

Here 7 [f(p, i)' f(p, %4)] is called objective function in
the minimization problem which is denoted by F(p,x;),
ie.,

F(p,xi) = 3io, (1 ARL) (I; ARL)+

(8 A (o, — R, — €))/ (5 A (m] — Ran, — £))].

There exist many routines in mathematical libraries (like
Nag [12]) to minimize F(p,x;) with or without con-
straints, The minimization process can be speeded up
if we supply also the first derivations, which can be easily
obtained using Equation 21 or 22.

(26)

We can adopt the weighted least-squares method to take
into account the uncertainty of measurements. That is,
we first use the general minimization algorithms to obtain
a better estimate of motion by minimizing the simple cri-
terion (Equation 26). Then we compute the covariance of
fi(p,x;) using the first order approximation, denoted by
W;. We again use the minimization algorithm to obtain

a new estimate by minimizing:
n

Y LF(p,xi) W £, xi)].
=1
The new estimate is generally better than the previous
one, but more time is needed for the compensation.

ANALYTICAL SOLUTION: SVD

The second representation of line segments (See Equa-
tion 3) and the quaternion representation of rotation are
used. [8] has already proposed an analytical method from
point and plan correspondences. The method described
here is directly inspired from theirs.

(27)

The relation between a line segment (u,d ) and the trans-
formed line segment (u’,d’) is:

u = Ru, (28)
d’ = Rd+u'At. (29)
The first one is evident, while the second one can be easily
verified using the definition of d:
d’ uAm'=u'A(Rm+t)
R(uAam) + W At=Rd + v’ At.

=RuARm + u' At
(30)
Due to the fact that the orientation of a segment is more
conservative than other parameters (for example, d or m),

i



we divide the motion determination problem into two sub-

problems:

1. Determine first the rotation using Equation 28 under
the following criterion:

n
Min ) _ [ju} - Ru, |[*.
=1
. Determine then the translation using Equation 29 un-
der the following criterion:
n

Min ) ||} - R"d; — u} A t]%,
i=1
where R" is the rotation matrix recovered in the first
step.

(31)
(32)

Determining rotation

By using Equation 16, we can restate the minimization
problem of Equation 31 in quaternion notation as:

n
Min Y [luf - q x u; x G?
i=1
subject to the constraint ||q|| = 1. Since the module is
multiplicative and ||q|| = 1, Equation 33 can be rewritten
as:

(33)

Min 3" [jul x q - q x u; |

i=1

(34)

From the definition of product of two quaternions, we can
express u. X q — q X u; as a linear function of q. Indeed,
there exists a matrix A; such that:

u; x q - qxu; = Aq, (35)
where
0 (w-u)
A; = e ;
(i —w) (uiTu)
Then, Equation 33 can be further restated as:
Min z q'AlA;q = Min q'Aq, (36)

=1
where 4 = 3" | A!A; and ||q|| = 1. The matrix A can
be computed incrementally.
Since A is a symmetric matrix, the solution to this prob-

lem is the four dimensional vector q;, corresponding to
the smallest eigenvalue of A.

Determining translation

We can determine translation using the standard mini-
mization technique. Let the derivation of Equation 32
about t be zero, we have:

3" 2(dj - R"d; — uit)'u =0,

(37)
st
(2 u’";(u'";)*) t="ul(d - Rd). (38)
i=1 i=1

1f (72, wj(a)") is a full rank matrix, we have explicitly
the translation vector:

n =1 n
e, ~t
t= (Eu;(u;)*) (Zu; (di—R'd,-)) . (39)
i=1 =]
If not, t is unrecoverable. It can be shown that
(E?=l u;(;i)‘) is always of full rank if two of u; (i
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1..n) are different (non-parallel).

EXPERIMENTAL RESULTS

The objective of our comparative study is to investigate
the applicability of different methods on stereo data. Due
to space limit, only part of the results using synthetic
data are provided. See [14] for more results and the com-
parisons using real stereo data. For simplicity, we use
some abbreviations to refer different methods (¢f. Ta-
ble 1). Note that we have not implemented the weighted
least-squares method in using the general minimization
techniques.

[ Abbrev. Rep. of rot. Approach
[ EKF-AXIS | rotation axis | extended Kalman flter
EKF-QUAT | quaternion extended Kalman filter
MIN-AXIS | rotation axis | Gauss-Newton minimiz.
MIN-QUAT | quaternion | seq. quad. programming |
EIGEN quaternion | singular value decomp.

Table 1: Abbreviations of different methods
The synthetic data we used contain 26 segments. One
of the endpoints of each segment is fixed at the center
of a sphere with radius 100 units. The other endpoints
are on the surface of the sphere. We choose them so that
the sphere surface is quasi uniformly sampled by them.
In other words, the orientation of segments are uniformly
distributed in the space. Thus we obtain a set of noise
free 3D line segments in one position. Then we apply a
motion, which equals [0.4, 0.2, 0.5, 200.0, -150.0, 300.0]
under the rotation axis representation, on this set and we
obtain another set. Finally, independent Gaussian noise
variables with zero mean and with standard deviations
0z, 0y and o, are added on the 3D coordinates of each
endpoint in z, y and 2 directions to obtain the noisy mea-
surements.

In the following, motion error is given in two parts: ro-
tation error and translation error. If we use the rotation
axis representation, let r be the real rotation parameter
([0.4, 0.2, 0.5]" in our case) and ¥ be the estimated rota-
tion parameter, then the rotation error is defined as:

er = [|r — £||/||r]| x 100% (40)
If we use the quaternion representation, we first transform
it into the rotation axis representation, and then compute
the error in the same way. Similarly, the translation error
is defined as:

er = ||t — t[|/[[t]| x 100% (41)
where t is the real translation parameter ([200.0, -150.0,
300.0]' in our case) and t is the estimated one.

Since the system is nonlinear, recursive methods may give
different solutions (even a wrong solution) with different
initial estimate. Figures 2 and 3 show the motion errors
of the four recursive methods with respect to different
initial estimates. The noise level of the measurements is:
o, =0y =2, 0, =6. In EKF-AXIS and EKF-QUAT,
five iterations of EKF are applied. In MIN-AXIS and
MIN-QUAT, usually more than 30 iterations are needed
to get a stable solution. The abscissa coordinates (from
-25 to 25) correspond to different initial estimates. More
precisely, the abscissa ¢ corresponds to the initial estimate:
[0.4 0.2 0.5 200.0 -150.0 300.0]*
+i[0.05 0.05 0.05 15.00 15.00 15.00]‘

For example, the abscissa -5 corresponds to the initial



estimate [0.15, —0.05, 0.25, 125.0, —225.0, 225.0)'. The
errors are the average of twenty tries. From all these
results, we can say that these methods (except MIN-
QUAT) converge in a rather wide range (from ~12 to 12
for EKF methods, i.e., from [-0.2, -0.4, 0.1, 20, -330,
120]* to [1.0, 0.8, 1.1, 380, 30, 480]‘). We find also that
the methods using the quaternion representation (espe-
cially MIN-QUAT) is less stable than the methods us-
ing the rotation axis representation. We observe also this
unstability of the quaternion representation in other ex-
periments. Another remark is that if MIN-AXIS and
MIN-QUAT do not diverge, they give exactly the same

solution.
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Comparison between EKF-AXIS, EKF--
JQUAT, MINAXIS and MIN-QUAT: Error
‘in rotation versus different initial esti-
mates

Table 2 shows the comparison on run time (on SUN 3/60
workstation), rotation error and translation error versus
different methods. The results are the average of ten tries.
Two line segment correspondences are used. The EKF is
iterated five times. o, = 0y = 2, 0, = 6. From Table 2,
we observe that using general minimization routine is very
time expensive and that the EIGEN method is very ef-
ficient. EKF gives smaller motion error than other meth-
ods with a reasonable run time. This is expected since
EKF takes into account the different uncertainty distri-
bution of measurements and the others treat equally each
measurement and each component of a measurement. An-
other remark is that using the quaternion representation
is more time consuming than using the rotation axis rep-
resentation. This is for two reasons:

Fig. 2

1. The quaternion representation has one parameter more
than the rotation axis representation.

2. There is a constraint for the quaternion representation
and in EKF-QUAT we add this constraint as an ad-
ditional measurement.

One can expect that the weighted least-squares method
using general minimization techniques gives the best esti-
mation, but it would take more time than MIN-QUAT
or MIN-AXIS.

Figures 4 and 5 show the motion error while the standard
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Comparison beiween EKF-AXIS, EKF-—
9:QUAT, MINAXIS and MIN-QUAT: Error

Fig "in translation versus different initial esti-
mates

user time | rot. error | trans. error
Methods (second) (%) (%)
MIN-QUAT 122.8 17.73 1.1
MIN-AXIS 57.7 17.73 1.17
EKF-QUAT 29.7 14.91 1.15
EKF-AXIS 27.7 14.26 1.16
EIGEN 0.07 20.72 1.12

Tabi .Comparison of different methods: User
able 2: :
time and Motion error

deviation in z direction (o) varies from 1 to 20 and o,
and oy are fixed at 1. The initial estimate for the recursive
methods are all zero. Five iterations of EKF are applied.
The error is the average of ten tries. Two correspondences
are used. We can observe that error in rotation varies al-
most linearly with the deviation o, but the slopes of the
curves corresponding to EKF-AXIS and EKF-QUAT
are much smaller than the others. This shows the ad-
vantage to take into account the uncertainty, especially
when the uncertainty distribution is not uniformm. MIN-
QUAT gives the same error as MIN-AXIS, but it di-
verges when o, becomes big. From Figure 5, we see that
all methods, except EIGEN, give almost the same error
in translation.

CONCLUSION

In this paper we have presented a number of methods
for determining 3D motion from line segment correspon-
dences. Two representations of 3D line segments and
two representations of rotation were described. With dif-
ferent representations of 3D line segment and rotation,
we showed how to determine motion using the Extended
Kalman Filter, a general Minimization process, and the
Singular Value Decomposition. These methods were com-
pared using both synthetic data and real data obtained
by a trinocular stereo. Due to space limit, only part of
the results were provided in this paper. See [14] for more
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results.

From our experiments, we observe that:

1.

Uncertainty on measurements should be taken into ac-
count, especially when measurements have different un-
certainty distributions.

. When measurements have small uncertainty (less than

2% of segment length), general minimization algo-
rithms give the best results. But when the uncertainty
becomes larger, the general minimization algorithms
do not give better results than EKF. Furthermore, they
are more time consu‘ming.

. In the general minimization algorithm or EKF, using

the quaternion representation is more time consuming
and does not give better results than using the rotation
axis representation. On the contrary, we observed that
using the quaternion representation is less stable.

. Recursive methods require an initial guess of the so-
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7.

lution. When the initial estimate is far from the true
one, recursive methods may give a wrong solution. In
our experiments, we observe that the recursive meth-
ods can converge to the true solution when the initial
estimate varies in a wide range from the true one.

. Using an iterated Extended Kalman Filter can reduce

the effects of non-linearity. Even when few correspon-
dences are available, EKF converges to the true esti-
mate after only 5 or 6 iterations.

. Using the quaternion representation of rotation, we can

use the singular value decomposition to obtain the an-
alytical solution of motion. The methods is efficient
and does not need an initial motion estimate.

EKF can incorporate new measurements incrementally.

We conclude that the Extended Kalman Filter with the
rotation axis representation is preferable, especially when
measurements have different distribution of uncertainty
like in Stereo.

We note that all methods presented in this paper can
be directly applied to 3D point data. In that case, at
least three 3D point correspondences (non-collinear) are
needed. Every three non-collinear points can form two
non-parallel segments.
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