RAPID - A Video Rate Object Tracker

Chris Harris & Carl Stennett
Roke Manor Research Ltd.,
Roke Manor, Romsey, Hampshire, England

RAPID (Real-time Attitude and Position Determination) is a
real-time model-based tracking algorithm for a known three-
dimensional object executing arbitrary motion, and viewed
by a single video-camera. The 3D object model consists of
selected control points on high contrast edges, which can be
surface markings, folds or profile edges.

The use of either an alpha-beta tracker or a Kalman filter
permits large object motion to be tracked and produces more
stable tracking results. The RAPID tracker runs at video-rate
on a standard minicomputer equipped with an image capture
board.

Three-dimensional (3D) Model-Based Vision enables
observed image features to be used to determine the pose (ie.
position and attitude) of a known 3D object with respect to
the camera (or alternatively, the viewpoint of the camera
with respect to the model) [1]. The knowledge concerning
the object that is used to perform Model-Based Vision is the
3D locations of salient and easily observed object features,
such as corners and high-contrast edges (eg. surface marking
sand crease edges).

Tracking of a moving object can be achieved by performing
such a vision task on successive frames of an image
sequence. By making use of the continuity of object motion
found in the closely-spaced frames of video imagery, the
process of tracking becomes simplified, permitting real-time
object tracking to be accomplished. By noting the difference
in image position between the observed image features and
the projection of the 3D model features with the model in its
currently estimated pose, the required small corrections to
the object pose can be calculated.

The particular model features that we use to perform tracking
are points located on high contrast edges. The projection of
these edges into the image is easy to perform, and the
corresponding image edges simple to locate by searching the
image pixels perpendicularly to the edge direction. Only the
perpendicular component of motion is sought because of the
aperture problem, and this is why we need the edges to be
locally straight. The set of measured displacements of these
edges are used to update the estimate of model pose by
linearising the resulting equations.

For the edges to be successfully detected, the edges need (o
be locally straight and uncluttered. Rudimentary edge
detection is performed by considering the row of pixels
perpendicular to the model edge that pass through the
projected control point, and finding the pixel position of the
largest brightness gradient along that row.

In general, the projected model control points will not lie
precisely on the observed image edges because of errors in
the estimate of the object pose due to object motion.
However, frames captured at video rate give errors in the
object pose which are small so allowing edges to be
correctly matched. To first order, small changes in the model
pose will cause image displacements of the control points
which are linear in the change in the pose, and so the

"3

perpendicular distances between the projected control points
and the observed image edges will vary linearly with the
change in the pose. This linearity enables the small
variations of the object pose that serve to minimise these
perpendicular distances to be determined by solving a set of
simultaneous linear equations, hence producing a fast pose
correction, Applying the resulting correction to the pose
estimate enables the pose estimate to rapidly converge on
the correct object pose as subsequent frames are processed.

If the object is moving across the image, the above method
of updating the pose vector will produce a result that lags
behind the actual pose. It is advantageous to counter this
deficiency by predicting ahead, as inter-frame motion in
excess of the half-length of the row of pixels can then be
tolerated. This predicting ahead is most simply achieved by
using a position and velocity tracker, the so-called alpha-beta
tracker [2].

The basic tracker algorithm as described above has limited
uses. The necessary enhancements on the basic process
described above are:

» to enable and disable control points appropriately as the
object attitude varies, and control points are revealed and
obscured respectively;

* to ignore control points on weak, error prone edges;

*» to define an edge polarity (ie. light/dark or dark/light) so
that strong edges with wrong polarity caught in the
search region are ignored,;

« to make use of profile edges whose 3D control point
positions change with object pose (eg. on cylinders,
cones, spheres, etc.);

* to predict ahead and to reduce the variability of the pose
estimates by using a Kalman Filtering technique[3].

BASIC ALGORITHM

Define the (Cartesian) camera coordinate system, which has
its origin at the camera pin-hole, Z-axis aligned along the
optical axis of the camera, and X and Y axes aligned along
the horizontal (rightward) and vertical (downward) image
axes respectively. Imaging of points in 3D will be handled
by the introduction of conceptual image-plane situated at
unit distance in front of the camera pin-hole. A point at
X
position R = (Y] in camera coords will then project to
Z

X

image position r = (x) L

y/ X

Z
Define a model coordinate system, with origin located at T
in camera coords, and with axes aligned with the camera
coordinate system. Consider a control point on the model

located at P in model coordinates, and situated on a
prominent 3D edge. This control point will project onto the

BMVC 1990 doi:10.5244/C.4.15



image atr = . x*+Px Let the tangent to the 3D
& (T,+P,) \Ty+Py )~ &

edge on which the control point is located be called the
control edge. The control edge is in practice defined by
specifying a companion control point to P, often also
located on the control edge, and which projects onto the
image at s. By considering the image displacement between
r and s, the expected orientation of the control edge on the
image can be determined. Let this be an angle o from the
image x-axis, hence

Sy = Ty . S, =T
coso= |+ —3| . sino= T B i
ls-rl ls-rl

We wish to find the perpendicular distance of r from the
appropriate image edge. Assuming that the orientations of
the image edge and the control edge are nearly the same, a
one-dimensional search for the image edge can be conducted
by looking perpendicularly to the control edge from r.
However, to search perpendicular for the edge in the image
to the edge at the control point would require finding the
image intensity at non-pixel positions. To avoid this
inconvenience, the image edge is searched for in one of four
directions: horizontally, vertically, or diagonally (that is, by
simultaneous unit pixel displacements in both the horizontal
and vertical directions). If the pixels are square, the diagonal
direction will be at 45 degrees, but with different image
aspect ratios, other angles will be traversed. The direction
which is closest to being perpendicular to the control edge is
chosen, and a row of pixel values centred on r, the
projection of the control point, is read from the image.

Write the orientation of the row of pixels from the x-axis on
the image-plane as the angle B, as shown in Figure 1.

i Tow of pixels
searched on the image

image edge

Figure 1: Diagram to show calculation of
perpendicular distance, 1

On the unit-focal-length image-plane, let the dimensions of

a pixel be k, and ky in the x and y directions respectively.

Hence the orientation of the diagonal directions of the row of
k

pixels will be B = +/- B*, where tan [3* = k_y

X

edge be encountered at a displacement from r of n, pixels in

the x-direction and ny pixels in the y-direction (for diagonal

directions, ny =+ ny). Then the unit-focal-length image-

plane distance of r from the image edge along the row of

pixels will be

d =V (n,%k,2 +ny2%,2)

and the perpendicular distance to the edge will be

1=d sin (B-at)

Let n be the number of pixel steps (horizontal, vertical or
diagonal) traversed along the row of pixels before the edge is

Let the image

encountered. The four permissible orientations of the row of
pixels are considered below, together with a condition on the
angle o used for selecting a particular orientation:

Horizontal, B=0:

*
. n B
I =-nk, sin o ‘lana‘ztan(‘i-:- 2]

Vertical, ﬂ=%:
*
l=nkycosct }tan a‘Stan(%)

Upward diagonal, B=B":

B n, B
l=n(kycos @ - kysin a) tan( 5 )<Ian a<tan(4— + 3 )
Downward diagonal, B =-p*:

* *
}=n(kyc0s o + kysin a) tan(%—):-lan 0.)-1311(‘2— + B?)

Each control point will result in a measured perpendicular
distance, 1, as illustrated in Figure 2. The set of these
perpendicular distances will be used to find the small change
in the object pose that should minimise the perpendicular
distances on the next frame processed.

Figure 2: Diagram to show a sample of
perpendicular distances, I;
Consider rotating the model about the model origin by a
small angle ©, and translating it by a small distance A.
Write these two small displacements as the six-vector q.
This will move the model point P, located in coords at
R=P+T,toR'in camera coords.

1

R'(q) = (Y)
7

=T+A+P+6xP
A x+Px+esz' BZP),
=| Ty+Ay+Py+6,P,-6,P,
TZ+AZ+PZ+BxPy-9yPX

This will project onto the image at

74



X

" _ x! _ ZI
ro=(3)=|%
ZI

Expanding in small A and ©, and retaining terms up to first

order, gives
[ Ay + 6yP, - 0,Py - x (A, + 6,Py -6,P)) ]

R [T,+P,]

[ Ay + 8,Px - 6P, -y (A, + 6,Py -6,P,) ]
y'=y+

['rZ + PZ]
where, as before,
(T,+P,) (T+P,)
Thus r'(q) can be written
o gq.a
r@=r+{qb
where
_xpy -yPy -P,
xPt Py yPy
% -P 1 Py
s T,+P, Iy s WS T,+P, 0
0 1
_x _y

Hence the perpendicular distance of the control point from
the image edge is

I'(q) =1+q.asino-q.b cos a
=l+q.c

where

c=asina-bcosa

and | is the measured distance to the edge.

Consider now not just one control point, but N control
points, labelled i=1..N. The perpendicular distance of the
i'th control point to its image edge is

Ii(q) = ; + q.¢;

We would like to find the small change of pose, q, that
aligns the model edges precisely with the observed image
edges, that is to make all I';(q) zero. If the number of control
points, N, is greater than 6, then this is not in general
mathematically possible as the system is overdetermined.

Instead, we choose to minimise, E, the sum of squares of
the perpendicular distances

N
E(q) =Z [li + q.ci]2 .
i=1

By setting to zero the differentials of E with respect to q, the
following equations are obtained

g (ci ciT)q= E“ (Ii ci)

i=1

75

This is a set of 6 simultaneous linear equations, and so can
be solved using standard linear algebra.

The change, q = [i] in the model pose specified by the

above algorithm must now be applied to the model.
Applying the change in model position is straightforward

T:=T+A

The change in object attitude however causes some
difficulties. Conceptually, the positions of the control
points on the model should be updated thus

Pi = Pi + eXPi

However, after numerous (thousands of) cycles of the
algorithm, finite numerical precision and the approximation
to rotation represented by the above equation, results in the
control points no longer being correctly positioned with
respect to each other, and thus the model distorts. To
overcome this problem, the attitude of the model is
represented by the rotation vector ¢ (a 3-vector whose
direction is the axis of rotation and whose magnitude is the
angle of rotation about this axis), which rotates the model
from its reference attitude, in which the model has its axes
aligned with the camera coordinate axes. From the rotation
vector ¢ can be constructed the orthonormal rotation matrix
A(g), which appropriately rotates any vector to which it is
applied. Conceptually, the rotation vector, g, should be
updated by the model attitude change, ©, thus

A(g) := A(©) A(®)

but doing this, the orthonormality of the rotation matrix
may be lost in time, so in practice the rotation vector, ¢, is
updated directly by use of quaternions. If A(g) is the rotation
matrix after updating, and the i'th model point is located in
reference coordinates at Pi(“‘n, then the position of this

point in model coordinates at the beginning of the next cycle
will be

P; = A(g) P;(eD |

ALPHA-BETA TRACKER

When using only the previous pose estimate in RAPID, the
tracking lagged behind the actual position of the model,
always having to catch up. A tracker was needed to predict
ahead the motion of the model to give RAPID the ability to
cope with fast but smooth motion across the image. The
alpha-beta tracker is one such tracker and was one of the
simplest to implement.

Let x; be the 6-vector that represents the estimate of the
pose of the object at frame number t, and q, the change in
pose requested by the above algorithm. The alpha-beta
tracker is given by

"1+1 =xl+vl+(qu

Vil =V +Bqy

where the 6-vector v, is the estimated velocity, that is, the
rate of change of pose per frame processed. o and  are
scalars effecting the integration time of the predictor.

On each image processed, the change of pose, (6,A), desired
by the algorithm has a very prompt responsiveness, and this
leads to noisy pose estimates, Use of the alpha-beta tracker
can serve to smooth out this response, but in some

circumstances such an ad hoc approach results in instability.
These can be overcome by properly modelling the



kinematics of the object by using a Kalman Filter, as
described by Evans[4].

ENHANCEMENTS TO THE BASIC
ALGORITHM

Enabling and Disabling Control Points

When the tracked object moves, control points are often self-
obscured, for example by rotating around to the back side of
the object. Such control points need to be disabled as they
become invisible, or else they will pick up on incorrect
edges, and interfere with the tracking. To cope with this
problem, a quantised view-potential table is constructed,
corresponding to the different distant camera viewpoints with
which the camera can view the object, and the visibility of
each control point is stored as a binary flag in the table. The
view-potential table is based upon square bins on the faces
of a cuboid box surrounding the object, each face being
subdivided into 144 bins. Assignment of the true/false
visibility flags is currently user-controlled as the object is
moved, though if a CAD model of the object were available,
ray-caching could construct them automatically.

Ignoring Control Points On Weak Edges

If the edge response at a control point becomes too weak, it
is dangerous to use it for tracking, as it may subsequently
incorrectly latch on to a stronger nearby edge. For this
reason the control point is automatically disabled when the
edge response is small, and re-enabled when it becomes
large. A common reason for weak edge responses is
obscuration by natural passing before the camera, such as
somebody’s moving hand.

Defining the Edge Polarity

The polarity of an edge is whether it is a dark/light edge or a
light/dark edge. The polarity is a very useful device to reject
incorrect edges, as nearby edges on an image very often have
opposite polarities. The expected edge polarity at each
camera viewpoint could easily be included in the
aforementioned visibility table.

Tracking Conic Profile Edges

The theory presented above is only able to track control
points situated on edges which have an objective 3D
existence, such as surface markings and folds. We wish to
extend the theory to cater for profile edges, as they are often
very prominent on images, and objective 3D edges may be
deficient. The simplest case to consider is that of a surface of
revolution, and fortunately, these are common in man-made
objects.

Consider, for example, making use of the two profile edge
points P and P’ lying on the surface S shown in Figure 3.
These points lie on the circle of intersection of the plane
passing through the point O, that is perpendicular to the
axis of revolution, AA'. Now the points P and P' will also
lie on the cone C that is tangential to the circle of
intersection, and co-axial with the surface, S. This cone is
specified by its apex, A, the centre of the circle of
intersection, O, and the radius of the circle, r. From this
specification, the 3D locations of the profile points P and
P' can readily be obtained. Consider now the 3D lines AP
and AP’ which lie on the surface of the cone. To first order,
changes in pose of the cone will leave these lines lying on
the profile edge. Thus by simply using P and P' as the
control points with companion point A, the profile edge at

P and P' can be introduced into the formulation constructed
for objective edges.

Figure 3: Diagram to illustrate theory of profile
edges

The profile edge theory has been further generalised to cater
for general quadric surfaces (eg. spheres, ellipsoids and
hyperboloids) so permitting a large class of profile edges to
be tracked using RAPID,

LABORATORY DEMONSTRATION

For a demonstration of the algorithm, the following figures
show RAPID tracking a number of objects using an image
capture board driven by a microVAX 3400.

Figure 4 shows the RAPID tracking of the box in a static
situation, with the box outline being displayed. The control
points used in the tracking are shown by the white dots
situated on the outline and elsewhere. Displaying a large
outline like this slows RAPID down by about a factor of
two.

76

Figure 4: RAPID tracking box in a static
situation

Figure 5 shows the box being moved by hand. Note that the
point obscured by the hand is ignored, as the algorithm does
not find the strong edge it is looking for. This makes the
algorithm robust in this respect as it will work as long as
there are enough points with strong edges to give a well-
conditioned pose estimate.

Figure 6 shows the tracking of a cone using conical profile
edges. In situations like this, RAPID can track more
robustly given points on profile edges.




Figure 6: RAPID tracking a cone making use of
conical profile edges

Figure 7: RAPID tracking an egg making use of
ellipsoidal profile edges

Figure 7 shows RAPID tracking an egg using profile edges
on ellipsoids. As the egg model is a surface of revolution, a
black cross marked on the egg is needed to give RAPID the
missing information it needs about rotation of the egg about
its axis of revolution. Without at least one control point on

77

the horizontal bar of the cross, the egg model starts spinning
about the axis of revolution in a random manner. However,
given the cross on the egg, RAPID tracks the egg without
problems.

CONCLUSION

Tracking of a 3D object using selected control points on
both objective and profile edges has proved to be both robust
and fast. Linearising the small changes in model pose has
proved to be practicable, and a single cycle of convergence
on each frame sufficient.

Similar work has been pursued by Stephens[5] and Bray[6],
but RAPID genuinely runs at video rate and produces
accurate pose estimates on very modest hardware (currently a
multiuser microVax 3400 with an image capture board).
Execution time is split up into two main areas:
computational time; and image capture board processing
time. These two temporal areas are roughly equal with the
Kalman filter on. Improvements in interfacing with the
image capture board would significantly improve the
performance of RAPID.

The main difference between RAPID and similar work of
Bray(6] is in the edge detection method, the single iteration
of the convergence procedure, and the extension to profile
edges.

Rather than performing a least squares fit to a whole edge
line, RAPID uses only a few selected control points along
the edge. At these control points, the search region for the
edge is approximately perpendicular to the edge. (This edge
detection method is similar to Stephens’ edge detection
method except that convolutions are not used due to the
expense of processor time.) Although using the whole edge
might make the algorithm more robust in some instances,
good placement of control points maintains the robustness
of the algorithm and gives RAPID its speed.

A single iteration of the convergence procedure has proven
to be sufficient because if there is a large change of pose
such that a single iteration would be insufficient, then the
edges that RAPID is trying to find on the image will either
have disappeared or be out of reach of the pixel detection
row. Hence tracking will cease or will be incorrect.

REFERENCES

1 D G Lowe "Stabilized Solution for 3D Model
Parameters" First European Conference on Computer
Vision, ECCV90.

S § Balckman "Multiple-Target Tracking with Radar
Applications" Artech House Inc, 1986.

R E Kalman "A new approach to linear filtering and
prediction problems" Trans. ASME, J. of Basic
Engineering, March 1960.

R J Evans "Filtering of Pose Estimates Generated by
the RAPID Tracker in Applications" Proceedings of the
first British Machine Vision Conference BMVC90.

5 R S Stephens "Real-Time 3D Object Tracking”
Proceedings of the fifth Alvey Vision Conference,
AVC89.

A J Bray “Tracking objects using image disparities”

Proceedings of the fifth Alvey Vision Conference,
AVCS89.






