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Under orthographic projection, two views of a
rigid moving object are insufficient to uniquely
determine the structure and motion of the object,
due to the existence of the bas-relief ambiguity.
Resolution of this ambiguity relies upon either
prior information about the motion of the object, or
else further views of the object. Two novel
algorithms to resolve the bas-relief ambiguity are
developed, they are well-formulated in that they
minimise image-plane error, and are shown
working on sequences of real images.

Structure-from-motion (SFM) algorithms are used
in the analysis of image motion caused by relative
three-dimensional (3D) movement between the
camera and the (unknown) imaged objects, which
are assumed to be rigid. These algorithms attempt
to recover both the 3D structure of the image
objects and the 3D motion of each object with
respect to the camera (or vice versa). The SFM
algorithms explored in this paper use point image
features, extracted independently from each image
in the sequence by use of a 'corner' detection
algorithm [1], and matched between images
forming the sequence [2].

As the imaging mechanism of conventional
cameras is perspective projection (ie. cameras
behave as if they were 'pin-hole' cameras), most
SFM algorithms have been based on perspective
projection [3,4]. These algorithms have been found
to provide acceptable solutions to the 'ego-motion'
problem, where a camera (of relatively wide field-
of-view) moves through an otherwise static
environment. However, for the perspective SFM
algorithms to be well-conditioned, the angle
subtended by the viewed object (in the ego-motion
problem, the viewed scene) must be large, and the
viewed object must span a relatively large range of
depths. Thus the perspective SFM algorithms are
of little or no practical use for analysing everyday
imagery of independently moving distant objects,
such as driven cars and flying aircraft. It is
algorithms for the analysis of such imagery that is
the concern of this paper.

The ill-conditioning of the perspective SFM
algorithms that we wish to circumvent occurs for
objects subtending a small range of depths, and

generally subtending a small angle. In these
circumstances, a good approximation to the
imaging process is orthographic projection, in
which the variation in object depth is assumed to be
negligible with respect to the distance of the object
from the camera. A further reason for using
orthographic projection is that it is mathematically
tractable for the analysis of the motion of point-like
image features between two images of a sequence
[5,6]. Unfortunately, the SFM analysis of a pair of
images suffers from an ambiguity in interpretation,
the bas-relief ambiguity [6], which both distorts the
structure and re-orientates the axis of rotation
(unlike the speed-scale ambiguity, which leaves the
structure undistorted).

Figure 1. Disparity vectors on two matched images

Figure 2. The 60 °rotation interpretation
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Figure 3. The 120 "rotation interpretation

The bas-relief ambiguity is illustrated on the two
images shown in Figure 1, of a toy truck which
has undergone a rotation of 60°. Detected feature-
points are indicated by black crosses, and the
motion of matched feature-points by the white
disparity vectors. Two (of the infinity) of motion
interpretations are shown in Figures 2 and 3. In
Figure 2, the correct (ie. 60°) rotation is selected,
and the trajectories of the matched feature-points as
the truck rotates shown as white curves. An
incorrect rotation of 120° is shown in Figure 3,
resulting in the rotation axis being closer to the
image plane. Note that both of these interpretations
fit the data equally well, as evidenced by the
trajectories ending at the same places, close to the
corresponding matches in the paired image.

Resolution of the bas-relief ambiguity requires
either prior knowledge of object motion (when two
frames are analysed), or else the analysis of three
or more frames. Two new algorithms are presented
below which use the aforementioned two
approaches of breaking the bas-relief ambiguity,
and they are applied to sequences of real images.

Rotation About a Known Axis

The two-frame orthographic SFM algorithm [6] is
unbiased as to the rotations the object is
undergoing: the algorithms simply find the rotation
that minimises the residuals of the image-plane
positional errors. Using data from just two frames
results in an ambiguity of interpretation, the bas-
relief ambiguity, but there may be circumstances
where a priori knowledge about the axis of rotation
is available or may be assumed, which enables this
ambiguity to be resolved. For example, a car
manoeuvring on a flat, horizontal road may be
assumed to be rotating about a vertical axis. In this
section we shall assume that the object is rotating
an unknown amount about an axis that appears
vertical in the image (if the axis were at some other

angle, then the image could be rotated until the axis
was vertical in the image), and that the projection is
orthographic, with the projection of the vertical
axis aligned along the vertical (y) image axis (see
Figure 4).

Let there be n matches between the two frames,
at image locations {x;,y;} on the first frame, and at
{x},yi} on the second frame. Define a coordinate
system with the z-axis aligned along the optical
axis, the x and y axes aligned with the image
coordinate axes, and the origin at a distance L in
front of the centre of projection (the camera pin-
hole), so placing the centre of projection at z = -L
(see Figure 1). Let the i'th point on the moving
object be located in 3D at S; = (X;,Y;,Z;) at the
time of the first frame, and at S} = (X}, Y},Z;) on
the second frame. Below, the object will be
assumed to be situated close to the coordinate
origin, and be small compared to L. Without loss
of generality, decompose the object motion
between the two frames as a rotation about the
origin, specified by the orthogonal rotation matrix
R, followed by a translation t. Hence

Si=RS, +t

Perspective projection onto a forward image plane
a unit distance from the camera pin-hole gives

(x;.y) = X, Y;)/(L+Z;)

(xi,y) = (XL,Yi) /(L+Z)
Substituting gives

xi= Ry1x+Rpoy#+Ry3zi+t,/ L+ O (L2)

and similarly for y';. Dropping the O (L-2) terms
for large L (this is the orthographic limit), and
without loss of generality setting L=1, gives

x;=R, ;x; +R

+ RISZ- +1

12Yi i

y'i = R21x- +R

i TRyY; Rz +ty

Now, for real data, the positions {x;, y;, Xi, ¥i}
will be contaminated by measurement noise, so that
the above equations will not hold true exactly.
Assuming isotropic Gaussian noise on the
observed image-plane locations, the maximum
likelihood solution is found by minimising, €, the

sum of the squares of the residuals of the above
equations

n
eR,tyty.{Z;)) =_zl[ (Ry1X;+R 12y +R 13zt -x3) 2+
i=
(RpiXi+Rogyi+Ry3z;+ty-y)2 |

Note that it is the actual residuals of the image-
plane locations that are being minimised, and not
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some other mathematically convenient but less
meaningful formulation (for example, eliminating

z; between the two equations). To minimise € with
respect to t,, set 0g/ot, = 0, giving

n
G =- 21 (Ryyx; + Rygy; + Ryazi - xj) /n
1=
= - (Rpx - Ry3¥ - Ry32) + X
where bars indicate means over all matched points.
Minimising similarly with respect to ty, and
substituting back into the equation for € gives

n
&R,{z)) = '21[ (R, 1%;+R 12y;+R 13(2-2)-x} )2 +
1=

(Ry1xi+R¥i+Rp3(z;-2)-y1 )2 ]

where, for conciseness, the means have been
subtracted from all of the image observations,
{x;,¥;-Xi,yi}. To perform the minimisation over
the object rotations, write the rotation matrix, R, as

1 0 0 cos® 0 sin® 1 0 0 N
R =| 0 coso. sinc 01 0 0 cosa -sinat
0 -sino. coso -sin® 0 cosB 0 sino coso y,

sino sin® coso. sin@ 3\

cosf
=| -sinasin® cosZo+sinZocos® -sinocoso(1-cos0)
-cososin®  -sincicoso(1-cos0) sinZa+cos2a.cos® )

where 0 is the unknown angle of rotation, and « is
the angle the 3D rotation axis makes to the vertical
(y) axis of the image (see Figure 4).

axis of
rotation

distant

Figure 4. Coordinate system.

Substituting for elements of the rotation matrix
enables € to be written as
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n
£(0) =Y { [ x; cosB + y; sinB sina. - x; +
i=1

(z; - Z) sinB cosa ]2 +

[ x; sinc sinB - y; (cosZau+sin2ot cosB)
+ ¥+ (z - 2) sina coso (1-cos8 ) 12 )

Minimising € with respect to z; by setting 0¢/dz; =
0, and substituting back into the equation for €
gives

€(0) =}E [ (xi+x;) sino (1-cos8) - (yi-y;) sin® |2/
i=1

[ sin20 + sinZo (1 - cosB ) |

Letting s = sina tan (6/2) gives
n
es) = 3 [s (4 %) - 0=y 12 /[s2+1]
=
Finally, setting de/ds = O results in the following
quadratic equation
n
X [(x} + x9)2 - (yi-yp?2]
s2 . g El = -1 =0
_Zl(xi +x3) (yi - yi)
=

Of the two solutions to this equation, choose the

one which minimises the value of €. It is interesting
to note that the single variable s contains all the

dependence on both o and 0, so that if the rotation

angle were 8 known, but the angle o unknown, it
too could be determined by solving the above
equation.

3-Frame Algorithm

The most general (ie. least biased) approach to
resolving the bas-relief ambiguity under
orthographic projection is to use three or more
views of the object (provided in practice that they
span a great enough range of viewing directions).
In keeping with our previous approach, we shall
consider only algorithms formulated to minimis
image-plane residuals, as these should show the
greatest stability and range of applicability.
However, the minimum residuals formulation
generally appears to be intractable, except in the
case of three views and constant angular



displacement between views, and this is the case
considered below.

Let there be n matches between the three frames, at
image locations {x;,y;} on the first frame, at {X;,
Y;} on the second frame, and at {xj,yj} on the
third frame. Performing the orthographic
projection as before, let the i'th point have
(unknown) depth Z; on the second frame, and so
be located in 3D at §; = (X,,Y;,Z;). Let the object
motion between frames two and one be
decomposed into a rotation about the origin, as
specified by the orthogonal rotation matrix R,
followed by a translation t

r;=RS;+t (x and y components)

Similarly, let the object motion between frames two
and three be given by

r;=RTS; +t (x and y components)

Note that the choice of the rotation matrix to be the
transpose of that used before means that the
angular displacements between frames one and two
and between frames two and three have been
chosen to be equal. This is done principally on
grounds of mathematical tractability, but, if a
correct assumption, will aid the stability of the
algorithm. This assumption will often be
appropriate for three equally spaced framed taken
in rapid succession of an object with relatively
large moment of inertia.

Explicitly, the above equations are
X; = R X +RppY; +RpzZ; +1y
¥i = Ry X; + RpY; +RysZ; +1t
xi= R;;X; +RyY; +R31Z; +¢
¥i= RiaX; + RypY; +RapZ; +4

Now, for real data, the positions {x;, y;, X}, yi}
will be contaminated by measurement noise, so that
the above equations will not hold true exactly.
Assuming isotropic Gaussian noise on the
observed image-plane locations, the maximum

likelihood solution is found by minimising, €, the
sum of the squares of the residuals of the above
equations

E(RJx’tyyt;(st'y’ [ Z1]) =

é[ (R Xi+R 1 Yi+R 3Z;+,-x; )2 +
(R X;#Rpp Yi+Rp3Z;+, -y )2 +
(R, X;+Ry; Y;+R 3, Zi4t x} )2 +
(RypXi+Rp Yi+R3,Z;+t, -y} )2 |
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To start on the minimisation of €, first define
u; =Ry X + Rpp Y - X
vi =Ry X + R Y -
uj = R X; + Ry Y, - xj
vi = RpX; + Ry Y- yi

e=Y[ (u+ Ri3Z; + t,‘)2 +(vi+RpZi + ¢ )2 +

L=

(o

(U + R3,Z; + £)2 + (vi + R3pZ; + )2 ]

To minimise € with respect to t,, set the
differential to zero, resulting in

n
2:1 [ (Ui + R13Zi + tx) =0.
1=

n —_—
Hence ty=— E (ui + R13Zi ) /n = u+ R13Z

1=

where the bars indicate means over all the matched
points. Minimising similarly with respect to the
other components of translation gives

e(R,{Z;}) =

n — —
3 [(u;- 0+ Ri3(Z+-Z) )2+ (vi- V + Ry(Z-Z) )2+
i=1

(u} - 0'+ Ry1(Z-2) )2 + (v} - ¥'+ Ry, (Z4-2) )]

Henceforth, for conciseness, write u; - U as uj, €tc.
This is accomplished simply by removing the
means from the all the observations,
{x;,¥;-X;, Y3, X1, yi). Minimising now with respect
to the Z; 's gives

Zi - z = - [ R13ui + R23Vi + R3]u'i + R32V'i ] /
[Ry32 + Ry32 + Ry 2 + Ryp? |
Substituting back for the Z; 's leaves the following

residuals term to be minimised

n
eR)=7 [ [v2+vientwva] -
i=1
[ Ry3y; + Rygv; + Ryyui + Rypvi ]2/
[Ry32 + Ry32 + Ry 2 + Ry3p2 1 )

Without loss of generality, write the rotation
matrix, R, as

cosd -sing 0 1 0 0 cos® sin® 0
R =| sind cos¢ 0 0 cosn -sinm -sinB cosb 0
0 0 1 0 sinm cosn 0 0 1



sing cosB - cosd sinb cosn

cos¢ cosB + sind sinb cosn
( -sin@ sinm

cos sinm

Setting A = cos 1 , and substituting the above
elements of the rotation matrix gives

e(0,0,A) =

n
(X;cos8 +Y;sinf - x,cos¢ -y;sind )2 +
i=1

(X;cosp+Y;sind -xicos0 -yisin6 )2 +
[ (AY; - y) cosB - (AX; - x}) cosb +
(LY - y) cosd - (AX; - x;) cos¢ 12/21 )

Keeping for the moment A constant, the above
equation can be transforming into finding the zeros
of an 8'th order polynomial. Zeros of this
polynomial are found by using a standard
numerical algorithm (such as NAG), and the
solution generated by each real root compared
numerically to see which provides the minimum
value of €. €(A) turns out in practice to be a well-
behaved function with a single minimum in the
range (-1,1) in all cases investigated, and the
approximate location of the minimum value of A
we determine numerically by a binary chop method
starting at A=-1 and A=1.

Results

The SFM algorithms were applied to a sequence of
real images of a toy truck on a turntable, shown in
Figure 5. The images are 128 pixels square, and
the truck subtends an angle of about 5° from the
camera. Between each frame of the sequence, the
truck was rotated by 10° about an axis passing

Figure 5. Sequence of 16 images.
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cosd sin@ - sing cosO cosn
sing sinf + cosp cosb cosn

-cos¢ sinm

sing sinm
2

through the centre of the turntable, and oriented
some 3° clockwise of the vertical. Thus the true
projection of the axis of rotation is a nearly vertical
line in the image, about one third of the image
width from the right-hand edge of the image. From
each image between 20 and 30 feature-points were
extracted using a corner detector [1], and these are
indicated by the black crosses in the later Figures.
The feature-points were matched by hand for
expediency, though work is currently underway to
automate the matching procedure.

Figure 6. Results of the Known-Axis algorithm for
rotations of 10°,20°, 30" and 40°.

In Figure 6 are shown results of the Known-Axis
algorithm as applied to pairs of images, the truck
rotating by angles of 10°, 20°, 30° and 40°
respectively. The first image of each pair analysed
is shown in the Figure. The flow-vector of each
matched point is shown as a short white line,
which terminates at the location of the feature-point
in the later of the image pairs. The projection of the
calculated axis of rotation is indicated by the black
line spanning the image, and it is seen to pass
correctly through the centre of the turntable. The
calculated rotation angles for Figure 6 are 9.4°,
19.1°, 30.7° and 44.9°. Results of all pair-wise
analyses of the 16 images are shown in Figure 7,
and a good correspondence between actual and
calculated rotations is obtained for all angles of
rotation.
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Figure 7. Results of the Known-Axis algorithm.

Figure 8 shows the results of the 3-frame
algorithm, the truck rotating by two steps of
10°,20°,30° and 50° respectively in each of the
images shown. The centre image of the triple is
shown, together with detected feature-points, and
the forward and backward flow-vectors to each
matched point is shown as a short white line. The
projection of the calculated axis of rotation is
indicated by the black line spanning the image, and
it is seen to pass close to the centre of the turntable.
The lay-over of the rotation axis is illustrated by the
black ellipse, which is the projection of a circle
lying in the plane of rotation, and centred on the
axis of rotation (its radius was chosen to be equal
to that of the turntable for ease of interpreting the
results).

Figure 8. Results of the 3-frame algorithm for
rotations of 10°,20°, 30°and 50°.
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Figure 9. Results of the 3-frame algorithm.

The calculated rotation angles for the four images
are respectively 10.9°, 21.6°, 32.1° and 51.6".

Results of analysing all equally spaced triples of
the 16 images are shown in Figure 9; here the truck
undergoes two rotations of the indicated rotation
angle. Note that the results show a larger spread
for the smaller angles of rotation, because here the
rotation is sufficiently small for the bas-relief
ambiguity not to be well resolved. In general, a
good correspondence between the calculated and
actual angles of rotation is obtained.
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