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It is shown that there is a strong relationship between the
Hough Transform and the Maximum Likelihood method.
The Probabilistic Hough Transform (PHT), a mathemat-
ically "correct" form of the Hough Transform, is defined
as the log of the probability density function of the output
parameters.

A model of feature error characteristics is proposed,
combining normally distributed measurement errors with
uniformly distributed correspondence errors.

A PHT is illustrated using the familiar problem of
finding straight lines from oriented edgels, and it
is shown that the conventional Hough method gives
a good approximation to the PHT. In situations
where there are many unknown parameters, how-
ever, conventional methods do not perform well, and
here the PHT does provide an effective alternative.

In this paper a mathematical formulation of the Hough
Transform [1] is derived from a treatment of the measure-
ment of input features as a stochastic process. This theo-
retical approach was motivated by a desire to understand
better the processes involved in the Hough Transform,
and to improve the performance of the Hough Transform
in solving problems with many unknown parameters.

The mathematical principles come from the "Maximum
Likelihood Method" [2, 3], used in probability theory for
the determination of distribution parameters from exper-
imental data. The Maximum Likelihood analysis leads
to the definition of the Probabilistic Hough Transform,
which is a likelihood function. If certain assumptions
are made about the error characteristics, the PHT is
very close to conventional Hough Transforms. If, in a
particular application, these assumptions are a reason-
able approximation, good results are usually obtained
using standard Hough methods. However, where these
assumptions are far from the truth, the Hough Trans-
form will not work well, and steps should be taken to
improve the model of input feature errors, such as filter-
ing the Hough space, or incrementing an extended region
instead of just the voting space. As a last resort, the full
PHT can be computed, but this is much more computa-
tionally expensive than conventional Hough methods.

In contrast to the conventional Hough Transform, which
is usually defined algorithmically and is intrinsically dis-
crete, the PHT is defined as a continuous mathematical
function. This allows any of the standard techniques for

finding maxima to be employed.

Maximum Likelihood Parameter
Estimation

The general problem of parameter estimation is re-
viewed, putting it into the context of the Hough Trans-
form. Whilst equation (5) is a standard result, its deriva-
tion is straightforward, and may be useful for those read-
ers more familiar with the Hough Transform than with
probability theory.

The PDF of pattern parameters gives a measure of the
relative likelihood of the presence of each possible in-
stance of the pattern in the image. As more image fea-
tures are taken into account, this PDF will change from
a uniform distribution, in which all possible patterns are
equally likely, to a distribution with a maximum at the
most likely set of pattern parameters.

The notation used is as follows: PDFs are denoted by f (),
X is a random variable representing an image measure-
ment, and £ is a specific image measurement. Similarly
Y is a random variable representing a set of pattern pa-
rameters, and y is a specific point in Hough Space. The
conditional PDF f(X = x \Y = y), or f (£ |y) for short,
is the PDF of X given the value of Y.

The PDF f (£ |y) represents the error characteristics of
the feature measurement — given the exact value of
something you are trying to measure, it tells you the
probability of each of the possible values of the measure-
ment. A model of the feature measurement process is
described below, but for now, it is assumed that f(£ \y)
is a known function.

Let Xt be the set of i input features: {£i, £2, .-£i}, and
let fn = f(y\Xn) (i.e. the PDF in Hough space given n
features). Let the a priori PDF, f (y) be denoted by fo.
Now, by Bayes theorem,

ML= f(£1 \y)f(x2\y, £1)f(£3 |y, £1, £2) •

Note that £,+1 is not independent of Xi, but that

(1)

(2)

0 (3)

In other words, previous features do affect the likely val-
ues of the next feature, but if the actual value of y is
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given, then previous features do not add any additional
information. Hence,

(4)

Since f(Xn) is constant with respect to y, it may be
absorbed into an arbitrary constant C, giving:

(5)

If fo is uniform, which is often a reasonable assumption,
then it too may be absorbed into the arbitrary constant.

Thus, the combined probability density function should
be formed by taking the product of the PDFs from the
individual features. Naturally, this may be computed
by summing the logs of the PDFs. Now the log of the
PDF is a function with a high value where the pattern
parameters are consistent with the input feature, whilst
the Hough Transform is the sum of a set of binary (0 or 1)
functions where the voting space (in which the function
has the value 1) corresponds directly to the regions of
highest probability in the PDF. Clearly there is a strong
relationship between the maximum likelihood method
just described and the Hough Transform.

Definition of the PHT

Definition 1 The Probabilistic Hough Transform H(y)
is defined as the log of the PDF of the output parameters,
given all available input features:

= ln[t(ff\x-l,X2,...x'n)] (6)

Where n is the number of input features.

From equation (5),

(7)H{y) = £ In [f (£,- \y)] + In [f0] + C

where C is an arbitrary constant.

Note that this is a definition of the Hough Transform as
a continuous scalar function in parameter space, and all
the mathematical tools available for manipulating func-
tions become available. The Hough Transform is nor-
mally defined algorithmically, and results in a discrete
array of integers, which is not nearly so convenient for
this kind of analysis.

Suppose f (x \y) is taken to be function having a uniform
non-zero background level, with a higher uniform level
in the cells corresponding to the voting space (the log of
this function is also binary). By taking out a constant
term and scaling, this is equivalent to the zero-or-one
increment that is used in the conventional Hough Trans-
form. Whenever a conventional HT is performed, there
is an implicit assumption that the PDF has this binary
form, and that the a priori PDF is uniform (i.e. all out-
put patterns are equally likely). Note that this implicit

model of feature errors includes a uniformly distributed
background region, which allows features to be subject
to large errors (such as errors of correspondence). This
is an important characteristic of the Hough Transform,
and is what gives the HT its legendary robustness.

Clearly, however, this model of feature errors could be
improved upon, and this is discussed in the next section.

A Model of Feature Error Distri-
butions

It is proposed that the PDF of image features commonly
takes the form:

(
(8)

where the mapping between feature space and Hough
space is expressed as /(£, y) = 0, and A and B are
weighting factors. In other words, the PDF is a weighted
sum of a uniform distribution and a normal distribution.
For example, given that a certain line is present in an
image, an edgel is taken at random. There is a certain
probability that the edgel will have nothing at all to do
with the given line, so its PDF is uniform, but there is
some probability that the edgel does belong to the given
line, in which case it is reasonable to assume that its
errors are normally distributed. Weiss [4] proposed this
model for the distribution of errors in edge points in a
line-fitting application, but it can be applied to almost
any kind of image feature.

The importance of the uniform component of the PDF
cannot be over-emphasized. If it is left out, the resulting
PDF of output parameters will simply be a normal dis-
tribution, and the result of the Hough Transform will be
the same as the least squares solution. Consider the sim-
ple case of estimation a single parameter y, having made
a number of direct measurements x of that parameter.
If it is assumed that each measurement suffers only a
normally distributed error, with standard deviation <r,
then the maximum likelihood estimator of y is the mean
of the measurements x. This is due to the fact that the
product of any two Gaussians is simply another Gaus-
sian, and is the well known result that justifies the use
of a least squares solution where errors can be assumed
to be normally distributed.

If, on the other hand, it is accepted that the measure-
ments may contain errors of correspondence, uniformly
distributed within some range, the PDF (within the al-
lowed range of y) is:

1 - p

2/max 2/min
• + exp

and zero elsewhere.' The product of a number of terms of
this form is not a simple expression, as it is in the case of
the normal distribution. In fact, if you go to the trouble
of multiplying out some of the terms, it is apparent that
the combined PDF is the sum over all possible combi-
nations of any number of input features, of the normal
distribution representing the mean of that combination,
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weighted by the probability that the combination con-
tains correctly corresponding features.

The PHT can now be computed according to (7), using
the following algorithm:

Example of the PHT

The familiar case of finding straight lines from oriented
edgels is used as an example of the computation of the
PHT. It is emphasized that this is not proposed as an
efficient method for finding lines, but as an exercise that
gives some insight into the PHT. The probability den-
sity function of errors present in the edgels is assumed to
be normally distributed in both lateral and orientation
error, together with a uniform distribution of correspon-
dence error. It is also assumed that all possible lines are
equally likely, so fo is uniform.

Let the edgel, x, have position [X, Y] and orientation a,
and let the line, y, have intercept a and orientation 6.
The Mapping from feature space to Hough space is given
by:

f(x, y) = (a- Of + (X sinfl + Ycosfl - a)2 = 0 (10)

PHT for Lines:

The PDF f(x |y) is split into two components:

(11)

within the range ir > 6 > 0, \a\ < amax, and zero other-
wise. The normal component, f'(x\y), is given by:

- £ - £ ) (12)
where c = X sin 9+Y cos 9-a (the lateral error), <j> = 6-
a (the orientation error), and <r and p are the standard
deviations of lateral and orientation errors respectively.

To find the weighting factor between the uniform and
the normal components of the PHT, it will be necessary
to know the constant of proportionality in (12). Since
the integral under a PDF is, by definition, unity, it is
necessary to determine the volume under the function
on right hand side of (12). It may be shown that, to a
first order approximation,

+o°

and the volume under the uniform component of (11) is
2Tamax. If p is the probability that an edgel chosen at
random corresponds to a particular line, then the com-
bined PDF, with appropriate weighting, is:

f(x\y) = ( 1 - p )
2if(Tp

exP " 5 ^ - 5 3 (14)

Note that any inaccuracy in the volume under f (x \y)
due to the first order approximation will have two effects:
the volume under the final PHT will not be exactly one.
This does not matter as it is only relative probabilities
that we are interested in. Secondly, there will be a slight
inaccuracy in the balance between the uniform and the
normal error distributions, which has a marginal effect
on the result.

In: A set of oriented edgels

Out: An array of samples of the PHT

Initialize all elements of the Hough space, H(y) to

zero

for each edgel x:

for each element y of Hough space:

compute ln[f(x|y)] using equation (14) and
add to H{y)

Note that this algorithm is much more computationally
expensive than the conventional Hough Transform. For
each edgel, a substantial floating point expression has to
be evaluated at each point in Hough Space, whereas the
conventional H.T. increments only one Hough Space cell
for each edgel. Note also that the Hough Space has to
be floating point, whereas in conventional Hough Trans-
forms it is an integer array.

Figure 1: Synthetic edgels. 20% of the edgels lie on the
leading diagonal

Figure 1 shows 100 randomly generated edgels. Each
edgel has a probability p = 0.2 of belonging to a line on
the leading diagonal. If it belongs to the line, its ori-
entation error is normally distributed with a — 0.02rad
and its lateral position error is normally distributed with
p = l.Opixel. Otherwise the position and orientation are
uniformly distributed. Figures 2(a) and 2(b) show the
conventional and probabilistic HTs for this data. The
values of p, a and p used in the PHT are the exact val-
ues given above. Figures 3, 4(a) and 4(b) show the cor-
responding results for a real image. In the real data set,
the conventional HT gives a better approximation to the
PHT than in the synthetic data set, as can be seen in
the topographic views in figures 5 and 6. This is be-
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(a) Normal Hough Transform. (b) Probabilistic Hough Transform.

Figure 2: Hough Transforms of synthetic data.

cause of the much larger number of edgels present in the
real data set, the random scatter of the votes forming a
better approximation to the PDF.

This shows that in this case, the conventional method
for forming the Hough Transform is a good approxima-
tion to the "correct" method, provided there is a large
number of input features, and the accumulator cell size
is of the same order of magnitude as the measurement
errors. However, in situations where the input features
are very sparse, or where the accuracy of measurements
is very low, the implicit assumptions made about the
error distributions are not acceptable, and a technique
based on better assumptions is required, which will give
results closer to the PHT.

Figure 3: Real data: edgels from image of camera cali-
bration cube.

Use of the PHT in High Dimen-
sional Hough Spaces

Experience has shown that the normal methods of han-
dling high dimensional Hough spaces suffer a degrada-
tion of robustness when the dimensionality exceeds four
or five. Although the PHT is not a viable alternative
to conventional methods in problems involving few un-
known parameters, as the dimensionality increases, the
PHT does have some definite advantages: In contrast to
conventional HTs, the PHT is independent of the size,
shape, and arrangement of accumulator cells. In dy-
namic Hough Transforms, in which the cells have a large
coverage, these factors have a strong influence on the
number of votes accumulated. In conventional Hough
Transforms, there is a sharp cut-off between a cell re-
ceiving a vote or not, which generates something a bit
like aliasing distortion. The smooth Gaussian roll-off of
the PDF means that the PHT has a lower bandwidth
and generates less noise.

Because the PHT is a mathematically defined continu-
ous function, any of the standard techniques for locating
maxima may be brought into use. Many of these require
evaluation of the gradient, and this can be determined
by algebraically differentiating the individual PDFs, and
summing the resultant gradient vector. The need to sam-
ple the function in the neighbourhood of the point where
the gradient is required is thus avoided.

One technique that has been used is Cauchy's Method of
Steepest Ascent [5]. Although this method has the prob-
lem that it may converge to a local maximum rather than
the global maximum, it has successfully been applied in
a 6D Hough space for tracking the unconstrained motion
of a rigid object [6, 7].

One difficulty encountered in using this algorithm is that
the PHT tends to contain narrow ridges leading up to the
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Figure 4: Hough Transforms of real data.

maximum. Because each "leg" is at right angles to the
previous one, this produces a large number of zig-zags
in the climb. A small amount of random error (actually
a quantization error) is added to each leg, giving a 60%
reduction in the number of zig-zags. This is significant,
as in a parallel implementation, there is a heavy overhead
associated with the change of direction with each leg.

Any amount of Gaussian smoothing may be applied
(with no overhead) by increasing the estimated standard
deviation of measurement errors. Thus, it is easy to re-
duce the bandwidth of the function in the early stages
of the search, which reduces the likelihood of converging
to a local maximum, and allows the use of a larger step
size. The actual standard deviation of the error specifies
the minimum spatial scale that can be relied upon, and
hence the minimum amount of smoothing that should
be used in the final stage of the search.

The technique was tested using the experimental data
described in [6], and showed much better robustness than
the Fast Hough Transform of Li, Lavin and Le Master
[8] which was previously used in this application. Whilst
the method is more computationally expensive than that
of Li, Lavin and Le Master, and the sequential climb is
difficult to parallelize, it is not prohibitively expensive:
the 3D tracking algorithm takes about one second per
frame on a single T800-20 transputer.

Conclusions

The relationship between the Hough Transform and
Maximum Likelihood parameter estimation has been ex-
plored, and it has been shown that the Hough Trans-
form is a maximum likelihood method. The Probabilis-
tic Hough Transform is a Hough Transform based on a
rigorous treatment of the parameter estimation problem.

The maximum likelihood method requires a model of fea-

ture error characteristics. There is a model that is im-
plicit in conventional Hough Transform techniques. An
important attribute of this model is that there is a non-
zero "background" probability spread over the whole
Hough space, which allows the presence of any number of
arbitrarily large errors (such as errors of correspondence)
with little or no effect on the solution.

Often the implicit model is a good approximation to the
feature error characteristics, but in some cases, and in
dynamic methods applied to high dimensional problems
in particular, this model is to blame for the poor perfor-
mance that has been experienced. A model consisting of
a weighted sum of normal and uniform distributions has
been found to give better results in these circumstances.
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(a) Normal Hough Transform. (b) Probabilistic Hough Transform.

Figure 5: Synthetic data Hough Transforms: topographic views.

(a) Normal Hough Transform. (b) Probabilistic Hough Transform.

Figure 6: Real data Hough Transforms: topographic views.
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