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The goal of feature grouping is to provide efficient cod-
ings of the necessary information for much of the scene
interpretation and object recognition applications in ma-
chine vision. This paper offers a sound theoretical back-
ground for feature grouping processes, using a Bayesian
approach which makes explicit the world knowledge which
is applied at any stage. We describe a framework which
can integrate many different forms of grouping and dif-
ferent levels of information. We also report on a pre-
liminary implementation within this framework to group
parallel lines in a perspective image. In support of this
we develop a mapping from the image uncertainty fo
the orientation uncertainty for the hypothesised groups.

The grouping of features to form perceptual structure is
basic in many machine vision applications. It has usually
been divided into two problems: segmentation which is
expected to yield a single, correct interpretation of the
data and grouping where it is accepted that a single so-
lution is not achievable from the available data. We ad-
dress ourselves to the latter problem, with the hope of
creating a system which is able to adapt to the level of
ambiguity in the observed scene and thus exhibit quali-
ties of opportunism and graceful degradation.

INTRODUCTION

The output of a feature grouping algorithm is usually a
set of hypothesised groups, ranked according to a mea-
sure of their quality or likelihood. In general these algo-
rithms are intended to feed into another system which
brings in higher-level data in order to disambiguate the
multiple solutions. A particular area of concern for us,
indeed our motivation for research into this problem,
is the use of a model-matcher as this higher-level sys-
tem. The desired end-product is a system which could
autonomously identify and localise instances of known
objects from a single video image. To restrict the prob-
lem further, we only concern ourselves with a polyhedral
world and use as our features line segments formed from
the output of an edge detector. A simple example of
such an image is shown in figure 1. This is the result of
applying the Canny edge detector to an image, followed
by a simple algorithm which finds linear segments in the
Canny edge map. Some of the problems in the interpre-
tation of these images can be seen here: duplicate edges
due to shadows etc; blending of edges between objects;
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Figure 1: A simple line tmage

the occasional non-general viewpoint and the edge de-
tector’s endearing habit of breaking edges at occlusion
boundaries. Feature grouping is even more critical in
interpreting more complex images — for example images
of occluded pallets. Here the grouping is critical both
in extracting the salient features (parallel sets of lines in
this case) and in reducing the data complexity.

After a brief mention of some of the other work in this
field, this paper goes on to outline the principles of the
application of Bayes’ Rule to feature grouping. We then
concentrate on applying these principles to a particu-
lar grouping cue: parallelism in perspective images. An
algorithm is described which applies some of the ideas
of the Bayesian analysis, and results are shown of the
application of this algorithm to a simple scene.

PREVIOUS WORK

Our work was inspired by Lowe’s SCERPO model-based
vision system [5]. He develops a simple statistical anal-
ysis of grouping processes which he applies to finding
particular perceptual structures in an image. He then
matches these structures to corresponding structures in
the model in order to generate a first estimate of view-
point, which is then refined iteratively as further matches
are made. Some problems with Lowe’s system were de-
scribed by Melvor in [6], one of which was an oversim-
plified statistical treatment. Horaud [3] has developed
a similar system which attempts to generate more com-
plex perceptual structures. Jacobs [4] has recently de-
veloped a system which finds perceptual structure based
on convexity and uses that structure to recognise model
subparts.
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In terms of our approach, Pearl’s description of Bayesian
networks in [7] has been very influential.

STATISTICAL APPROACH

Our approach centres around Bayes’ Rule [1]:

_ plelh)p(h)
p(hle) = S (1)
where
p(e) = > p(elh)p(h) (2)

heH

In our case h is a grouping hypothesis and e is the
available evidence. The prior expectations p(h) for our
grouping hypotheses are determined either empirically
or heuristically.

Probabilistic Networks

Our initial concept was of a network where the nodes
were the observed features, and the arcs corresponded
to hypothesised relationships between them; the hope
was to use a propagation mechanism similar to Pearl’s
in order to evaluate the likelihoods of the different rela-
tionships. We begin with the simplest possible case: two
features Xy, X7 and a hypothesised group H made up
from them. Associated with each feature is a likelihood
function f;(z;) defined over the space of their parameters
x;. The false and true states hy and h, of the hypothesis
have respective likelihoods (1 —p;) and p;. Furthermore,
we split the h; state into a state space X for the pa-
rameters of the group and we can associate with this a
distribution f(z); h can now take values from the set
{h;} U X. If we consider the total evidence e;u:

f(etot|h'f) = (1-p) frdzy fadxy
X_'l Xg
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where

fiz) = [ fiedf(alzds 3)
X

We can multiply the likelihoods together in this way only

if they are independent; here we have chosen the state-

space for H such that the two feature likelihoods are

conditionally independent so long as we know h.

Following the ideas presented by Pearl in [7] we could
extend this to an arbitrary number of features as long
as we preserve the above conditional independence; for
this we would need to know that the hypotheses relating
to a feature X; were independent once z; was known, ie
that X is the only link between these hypotheses. This
condition proves to be unattainable in a real system:
we cannot generate a singly-connected network from the
possible relationships between the features in a real im-
age.

The solution to this lies in explicitly representing the
groups within the image. Unfortunately this solution in
its naive form has a completely unmanageable level of
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complexity. It lies in fact somewhere between e™ and n”
where n is the number of features in the image!. For even
simple images such as figure 1 n is around 60, so there is
little hope of success from a frontal attack. Fortunately
we do not need to evaluate the entire hypothesis space, as
much of it will have a negligible likelihood. Furthermore
the data will tend to separate into cliques separated by
clear ‘boundaries’. The groups involving data from more
than one clique will have a very low likelihood. Thus we
can evaluate the groups independently within the cliques
rather than over the whole space, with the exponential
gain which results.

The Vanishing Direction

In this paper we will concern ourselves only with group-
ing line segments into parallel sets in perspective images.
A complete feature grouping system needs to concern
itself with many grouping processes; we have not ad-
dressed the additional problems posed by such a system
here. We chose to concern ourselves with parallelism be-
cause it is exemplary of the class of grouping problems
where a single feature leaves one (or more) of the group-
ing parameters unconstrained: in this case a line segment
constrains the orientation to lie within the fangent plane
(defined by the line segment in the image plane and the
camera focal centre) but leaves the orientation otherwise
unconstrained (see figure 2(a)).

The traditional parameter space for orientations in space
is the Gaussian sphere. Traditionally also this has been
parametrised by two angles in a global coordinate sys-
tem. We represent our orientations by a unit vector ' in
space which we call the vanishing direction (ie: a point
on the Gaussian sphere) with which we associate a nor-
mal plane (the plane tangent to the Gaussian sphere)
within which we represent covariances etc. ..in local co-
ordinates without the singularities associated with the
global coordinate systems. We project the likelihoods
from the image onto the Gaussian sphere as described
in the appendix, and then back-project them onto the
local tangent plane; the equations developed do not de-
pend on the orientation vector & being normalised which
considerably eases this back-projection.

The vanishing direction corresponds to the unit vector
along the direction of the line from the camera focal
centre to the vanishing point in the image plane. We
can construct the vanishing direction vector from the
projections l; and I of two parallel lines L; and Ls in
the following manner (see figure 2(b)):

1. construct the two normals 7] and 15 to the tangent
planes P; and P, corresponding to each of the line
segments respectively;

2. construct & as the direction of the intersection of
the two planes: ¥ = n] A 5.
To show that this direction is also that of the parallel
lines in space (up to camera calibration errors):

e lines L; and L4 lie within planes P; and Ps respec-
tively;

1We have a recurrence formula which shows that the complexity
lies close to but remains less than n™.
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Figure 2: (a): constructing the tangent plane; (b) inter-
secting two planes to find the vanishing direction.

e [, and Lo never meet, so must both be parallel to
the intersection of P; and Ps;

e 7 is parallel to P) N P, so must be parallel to both
L, and L.

The vanishing direction has therefore two distinct advan-
tages over the vanishing point as a grouping parameter:

1. the lack of singularities when the observed parallel
set is parallel to the image plane;

2. the correspondence between the vanishing direction
and the true direction of the line segments in space.

Computing the hypothesis likelihoods

The expression in equation (3) corresponds to a summa-
tion over the subspace of the feature’s parameter space
which is consistent with the particular value = of the
group’s parameters — in this case the vanishing direction.
In the Appendix we develop an analytical expression for
the likelihood of a line segment given a vanishing direc-
tion:

ETAI:“.:‘ JQ'

elf) = | —=—| ex 4
plel?) = | S| oo ( (@
where the matrices A, A’ and B are derived from the ob-
served line segment. The above expression? is linearised
about the current estimate of # in order to approximate
it by a Gaussian function. This approximation greatly
simplifies the calculations.
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Combining likelihoods

The expression for a normalised Gaussian distribution

2For what are euphemistically known as ‘historical® reasons, we
T 4! . . s
take %TAB}I to be constant in our implementation. The full effects
of this have not been analysed.
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where n is the dimension of the parameter vector p.
When we multiply two of these together, the result is
a non-normalised Gaussian:

N = e (-30-DTM6-9) ©)

NPy, M) x N(By, My ) = de™® x N(®', M'™") (6)

where

M = My + M, (7)

P = MY MP, + Mp,) (8)
1 .

K = 5(51—52)TM1M’”1M?(3’1—P2) 9)
|M1||M2|)%

X o= Pttt 10
(|M*1(2ar)ﬂ (10)

We use &, the statistical distance (or normalised dis-
tance) and A in our estimator for the likelihood of a
group. The expression for P’ is used to find an initial
estimate of the group’s parameters; we then re-linearise
about this point to provide better estimates for all four
parameters. The likelihood of the data once grouped is
then Ae~* times the separate likelihoods. This could be
viewed as a likelthood gain.

IMPLEMENTATION

We use a split-and-merge approach in our experimen-
tal implementation. We start from an initial global in-
terpretation where each feature forms a distinct group
which we “know” is indivisible. From this we create
new hypotheses by merging those hypotheses when the
likelihood of the resultant hypothesis is greater than the
combined likelihood of the two separate hypotheses. The
search is carried out depth-first in parallel: each hypoth-
esis can operate as a distinct process. Our implementa-
tion is currently on a serial machine and thus the paral-
lelism is only simulated.

The basic algorithm is as follows:
Initialise NETWORK
repeat
for each active NODE in NETWORK
if Ok-to-merge(NODE)
Merge-with-best (NODE)
until Termination-condition
write out all active nodes

The Initialise function allocates a hypothesis node
for each feature, and sets up an initial neighbourhood of
possible matching features according to the value of the
statistical distance between them. In order to restrict
the combinatorial complexity the statistical distance is
augmented by a measure of the actual distance between a
pair of line segments, scaled inversely according to their
lengths. This distance was not subsequently used in the
evaluation of the hypotheses, but only in the statistical
distance measurement.

The main loop attempts to create new hypothesis nodes
by merging the existing ones. The condition tested



in Ok-to-merge is that the best merge for NODE has
NODE as its best merge. This interlocking ensures that
the most likely hypotheses are generated before the less
likely ones, but the assessment is of course only based on
the local evidence. Then the Merge-with-best function
carries out the merging, creating a new neighbourhood
from the old neighbourhoods, based on the same statis-
tical distance function as Initialise; it also sets a flag
in the neighbourhood pointers of the two nodes being
merged to prevent them from merging again, and rejects
any node whose likelihood is very low (as a result of the
non-linearities in the likelihood function). We have not
determined any sophisticated termination conditions; at
present we use an iteration count or an execution-time
bound.

The simple approach outlined above is not satisfactory
as it stands and has two serious problems. The first
is that many duplicate hypotheses are formed. While
we prevent any two nodes from merging more than
once, we cannot prevent the same node being created
via several different paths. Thus the functionality of
Merge-with-best needs to be extended to determine
whether or not the new node being created already ex-
ists. The second problem is that the actual likelihood
gain is not taken into account. This is where the notion
of an active node comes in. We define as inactive any
node whose likelihood is less than the combined like-
lihood of its ‘component parts’ or descendants (those
nodes which merged to create it). Thus the algorithm
does not proceed along any ‘downhill’ paths.

In order that the most complex groups are created as
early as possible, any hypothesis which has an active
ascendant waits until its ascendants have exhausted all
the possible moves before becoming active again itself.
Alone, this leads to deadlocks; these can be detected by
the ascendant which then temporarily returns control to
its descendents until the deadlock has been resolved.

For the statistical distance to be valid, we need to ensure
that the two evidence-sets being compared are indepen-
dent. When we create a new hypothesis, its neighbour-
hood is generated from the neighbourhoods of its two de-
scendents. In doing this we discard any duplicate neigh-
bours; in order to ensure independence we also discard
any neighbours whose intersection with the new group
is non-null.

As the algorithm proceeds we maintain a network of as-
cendants and descendents of each hypothesis node. The
ascendants are those hypotheses which are created from
the current node, while the descendents are those hy-
potheses which merged to form the current node, or
merged at a later time and were added to the network.
This network is (at present) used for two things:

1. it allows an efficient, local search for duplicate
nodes;

2. it provides a means by which likelihoods can be com-
pared in a statistically sound manner, since all pairs
of descendents (and all their pairs of descendents)
are independent,
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Figure 3: best group from widget tmage

The ability to compare likelihoods should allow us to im-
plement a statistically sound hypothesis-pruning strat-
egy. Furthermore the ascendant-descendent structure
should provide an efficient way to extend matches be-
tween model and image features in a model-based vision
system.

PRELIMINARY RESULTS

The algorithm was run on the image of figure 1. The
results are shown in figures 3 and 4. Figure 3 is the best
group obtained; the second and third best (not shown
here) are subsets of this group. The group in figure 4 is
the fifth-best. The fourth best group was formed from
two segments in the background behind the object. The
remaining groups are either not particularly significant
or are subsets of one of these two.

The likelihoods are expressed as the negative logarithm
of the actual likelihoods — effectively a squared error
term. The reference for these (likelihood = 1 or error
= 0) is the initial state, where all the features are con-
sidered as separate. The error for the first group shown
above is —5.6 and for the second it is —2.0, giving like-
lihoods of 270 and 7 respectively. The parameters for
these likelihoods were chosen in a fairly ad hoc manner
such that they gave reasonable performance on a range
of similar images. The algorithm is written in C and ran
unoptimised in 8 seconds on a Sun SPARCstation.

DISCUSSION

The results achieved are encouraging: the statistical ap-
proach is apparently competent, and the computational
burden of our implementation is reasonable for simple
images. We do not however claim that perceptual struc-
tures based on parallelism alone will ever be sufficiently
rich to allow robust model-matching. We will also argue
here that a critical concept is lacking from our statistical
knowledge at this time.

In order to extract useful perceptual structure from an
image, we need to apply more than one grouping process;
at the very least we would wish to extract vertices and
make use of collinearity to repair some of the defects
due to the edge detection. The full Bayesian statistics
provide for competition between these different processes
where they conflict and cooperation where they agree;



Figure 4: another group from widget image

our computational approach needs to capture both of
these.

The results shown here correspond to parameters which
were chosen because they gave reasonable results rather
than because they were theoretically sound. There is
good reason for this. We wish here to group segments ac-
cording to perspective parallelism; however we can con-
struct a vanishing direction for any pair of line segments
with zero error but a relatively small prior likelihood.
In order that our algorithm should progress we need to
estimate this likelihood as being higher than the more
theoretically sound one, so our parameters are biased
towards this. What would be far more satisfactory from
our point of view is a method of estimating the uncer-
tainty in a likelihood estimate, or of estimating the util-
ity of an action according to a loss function related to
the expected likelihood of the ascendants of a possible
hypothesis. This is the critical concept lacking here in
our statistical treatment.

CONCLUSION

We have outlined a statistically rigorous approach to
feature grouping in its most general sense, and success-
fully applied that approach to a particular case of feature
grouping where there exists a substantial amount of am-
biguity. In doing this we have also developed a likelihood
function for spatial orientation of a line segment given
an observed segment. We believe that the formal nature
of these developments is the major contribution of this
paper.

Our future aims are to extend the implementation to
cover a greater range of grouping processes in order to
extract complete perceptual structures. We hope to be
able to integrate the instantiation and localisation of
a known object model within the same framework as
we use to evaluate the other hypotheses. We need to
generate a theoretical backing for a fine-grained utility
function to direct the search, and for a pruning strat-
egy which will allow us to tackle more complex images.
Finally we need a method of estimating the prior like-
lihoods for hypotheses to replace our current heuristic
methods. See [2] for full details.
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Figure 5: Line segment parametrisation

APPENDIX
Constrained likelihood for a line segment

We describe the statistics of a line segment in 2D in
terms of its two endpoints pj and p3. The longitudinal
error is assumed normally distributed and independent
for each endpoint as well as independent of the lateral
errors. With a line segment we associate a local coor-
dinate system u,v as in figure 5 with the origin at the
midpoint of the line. In this figure, the bold line is the
observed segment and the dashed line 1s a hypothesised
true segment. We concern ourselves here purely with
the lateral errors v; and vo. These are described by a
joint normal distribution based on the squared normal
distance of the observed segment from the supporting
line of the hypothesised segment. This gives an error
expression of the form:

I
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The resulting information matrix is:
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where lgo, is the expected value of the squared distance.
The resulting probability density function is:
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The eigenvector and eigenvalue matrices for M are:
1 1 1 )
"~ gl 5"
1 2 -
A = ID [ 3 Ol O
foc,l';l 0 H 0 Ta
where o7 and o2 are the decoupled variances. Let us
now assume that vy and vy are linearly related:
vy = avy + b (13)

We can decompose this along the principal axes of the
distribution, giving:

oo (14+a)vy +b
1 V2
S (1—a)v; —b
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Which then gives us:

(1—a)e, — V2b
Thus our expression for the total error becomes:
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We can write this in the form:
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There remains to determine the direction along which
the likelihood should be integrated:

|d§] = +/de? + de?
= d B e A
a1yfd (1+a)?
= [de;

So finally, the likelihood of the line segment data given
a and b is:

p(ela,b) = Bov/2m exp(—p) (16)

Mapping to Orientation Space

We now reformulate the results obtained in the previous
section in terms of the vectors in orientation-space. The
values of @ and b which constrain the line in equation
13 correspond to the choice of a vanishing point in the
image through which the line segment must pass. If we
refer all our vectors to the focal centre of the image, let
71, pa refer to the two observed endpoints in the image,
¥ refer to the vanishing direction and 7 be the normal
to the line in the image plane. The condition that the
line segment should pass through the vanishing point is
equivalent to asking that the two actual endpoint vectors
and the vanishing direction be coplanar, which we can
express via the vector triple product:

[Pl + w1 @] A P2 + (avy + b)A] .= 0 (17)

This gives us the two equations:
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o
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which give us:

n AT
ﬂ' — — — =
p1 AT
A ps.T
b B e
pL A AT

Some further manipulation gives us:

-+ e ‘-02
2(pi A p2.T)

P = -~ = = = = =
(51 — 1) A2 0F + [(p1 + p2) A 71.3]° 0
) 20703 (71 A 7.8 + (5 A 7.5
(80) T e xR
[(Pl = P2) A ﬂ--’-'-«"] oy + [(p1 + 3) An.z|" o)
. . 2 a2lg 2 _ 6Ballg
Substituting for of = == and o5 = =
— - n2
p = ! (P1 A p2.%)
loo, [(5i — p2) A 1.2} +3[(5 + ) A L.2)°
) 1202 % [(p: A2} + (5 A 7.2
(Bo)” =

(51 — ) A 7i.2]° + 3 [(pi + p3) A 2.2)°
We can now express the likelihood in equation (16) as a
likelihood conditioned on #, the vanishing direction.

For ease of computation we can reformulate the above
expressions in a matrix form:

_ xT Ax

P = TBx

T At

2 _ x A'x
(Bo)” = T Bx

The matrices need only be computed once for each line
segment.
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