
APPLY: Machine Independent Image Processing Language
and its Implementation on a Meiko Computing Surface

Peter M Dew *, Han Wang l and Jon A Webb 2

School of Computer Studies, The University of Leeds, Leeds, UK
2Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA

APPLY is a machine independent, low level image
processing language for expressing local window
operations. It has two main advantages: (1) it significantly
reduces the programming effort, and (2) it can be mapped
onto a wide range of parallel computers. In this paper, we
report an our recent experience on implementing APPLY on
a Meiko Computing Surface (Transputer array machine)
using a farmer/gather model. The performance of Meiko
implementation on a number of edge detection algorithms
including the popular Canny operator is analysed.

1. Introduction
Low level image to image processing is an important

component of a computer vision system. There is now a
wide range of equipments for performing these
computations in real and reasonable time and the major
problem is porting software between these machines.
APPLY is machine independent image processing language
for expressing local windowing operations, such as the
Sobel edge detector. The vision researchers express the
image processing computations in APPLY and these codes
are then automatically mapped on particular image
processing equipment. Another advantage of the APPLY
approach is that it is easy to extract parallel tasks and
implement the computation on a processor array machine
such as a Meiko Computing Surface.

The purpose of this paper is to outline the APPLY for
edge detection algorithms and discuss its implementation on
a Transputer array machine using a farmer/gather model.
The Canny Edge Detector has been implemented in APPLY
and results suggest that it runs faster than hand coded
algorithms reported in the literature. Finally, the APPLY
language is compared with LATIN [Crookesl987].

2. Low Level Image Processing
Let /,„ denote the input image and Iout denote the

output image, low level local windowing image processing
can be defined as the mapping: W: /,„-»/„„, , where the
function W is amenable to output data partition [Dewl988].
That is,

and

The abstract machine model for supporting output
data partitioning is the farmer/gather model (or processor
farm) shown in Figure 1. The abstract machine model can
be mapped into a wide range of parallel and serial
computers [Sleighl988].

input images

W W w

output images

'out

W

C image^s.
collection/

Figure 1. The Abstract Machine Model for Local
Windowing Image Processing

3. The APPLY Language
The APPLY language was designed to automate the

process of low level image processing [Wallacel988]. It
provides the programmer with a machine independent
interface for local window image-to-image computations.
The user specifies the algorithm by the language and the
compiler and its supporting environment will translate and
map this algorithm into the physical machine. It has two
main advantages: (1) It reduces the programming effort by
hiding image handling routines and the machine
architecture, and (2) It is machine independent. It uses the
abstract machine model shown in Figure 1 and generates
automatically the object codes for the worker processors. So
far, it has been implemented on the Warp
[Annaratonel987], Hughes HBA, UNIX machines and the

309
AVC 1989 doi:10.5244/C.3.56

Meiko Computing Surface.

APPLY has an ADA-like syntax. It defines a local
window operation for each input image, conducts an
arbitrary computation over the window, and outputs the
processed image. For example, the Sobel edge detector is
defined as two template convolutions, the horizontal
template (horz) and the vertical template (vert):

horz= vert=

horz

horz
vert

vert
if switch =

imageout

where the output is a scalar value, either "vhorz2+vert2 or
| horz | + | vert \. The Sobel edge detector expressed in
APPLY is shown below.

procedure sobel(
imagein : in array (-1..1, -1..1)

of byte border mirrored,
switch : const integer,
imageout: out byte)

is
horz, vert : integer;

begin
imagein(-1,-1)+2*imagein(-1,0)
+imagein(-1,1)-imagein(1,-1)
-2*imagein(l,0)-imagein(1,1);
abs(horz);
imagein(-1,-1)+2*imagein(0,-1)
+imagein(1,-1)-imagein(-1,1)
-2*imagein(0,1)-imagein(1,1);
abs(vert);

1 then
= integer(sqrt(horz*horz
+ vert*vert));

else imageout := horz + vert;
end if;

end sobel;

The procedure argument of s o b e l specifies the 3x3
input window, i m a g e i n and the output window elment,
imageou t . Each element of the window is of type byte
and the elements of the window are referred in the normal
array notation. The parameter s w i t c h is used to select the
value of the output window element imageout . APPLY
applies the input window to all pixels of the image and the
phrase b o r d e r m i r r o r e d signifies that border pixels
for input images are obtained by mirroring.

The compiler generates object codes for the host that
sends and gathers images and for worker processors that
conduct local window operations. The object codes
generated by the compiler is machine dependent. For
example, three languages are supported: OCCAM, C, and
W2. In a worker processor, the computation has four steps:
get row, compute, put row and update the input buffer. Only
one window buffer is declared for each input image. The

window operation is overlapped with the I/O. It is possible
to improve an hand coding, for example, a cyclic scroll
buffer is used which updates the input buffer under the cost
of only one addition.

The object code will be loaded into the machine for
execution together with the APPLY supporting environment
which includes the system configuration information, the
networking library, die image I/O library and the user
interface.

4. APPLY Implementation on the Meiko
Computing Surface

Experiments have been conducted on the Meiko
Computing Surface using the parallel one-dimensional
array (PODA). Figure 2 depicts the topology of PODA.
" H " represents the host and " W " the worker processor.

Figure 2. Parallel One Dimensional
Array(PODA)

In the PODA approach, the Hin process will receive
images from the disc file and deliver them to the worker
processors line by line. Each line is divided into N equal
sections. Then these sections will be packed into data
packets and sent down to the named processors. The Hout

process collects the results from the worker processors and
puts them back to the disc.

5. Performance of the Edge Detection
Algorithms

One advantage of APPLY is that it is easy to compare
the computational time for a range of local window
operation algorithms. For example, two algorithms, "egpr"
(edge preserving smoothing) and "egsbl" (Sobel edge
detector) were chosen to investigate limitations of the
network I/O capacity. The algorithm "egpr" is compute

310

bound relating to "egsbl". The result for 8, 32 and 64
Transputers are shown in Figure 3. It can clearly be seen
that there is not much advantage in exceeding 32
Transputers.

time(sec)

i

10.0~

5.0" egsbl

1 i

No.

SPr

1 1 1

30
of Processors

0
B

1 1

60

Figure 3. Performance of "egpr" & "egsbl"

6. Extension of APPLY to Pipelined Multiple
Window Operations

Algorithms in the previous section all can be
expressed by a single window operation. However, image
processing algorithms often contain more than one window
operation. For example, the Canny edge detector has four
steps: (1) Gaussian smoothing, (2) 2D differentiation, (3)
non-maxima suppression and (4) hysteresis (threshold). In
the previous APPLY version, these steps of Canny operator
would have to be compiled and executed individually,
because the compiler can handle only one procedure at a
time. It is an expensive process. For example, the
procedure that computes the differentiation will receive the
Gaussian smoothed image and output three images of
gradients in X and Y dimensions and the magnitude which
is the sum of absolute value of X gradient and Y gradient.
The communications on the network involves input of one
real image (4 bytes per pixel) and output of three real
images (two for the gradients and one for the magnitude)
which are then saved in as the disc files ready for the input
of the next procedure. Then gradients and magnitudes will
have to be loaded from the disc again for the input of the
next procedure which is the non-maxima suppression. It is
clear that intermediate results will have to be moved along
the network of processor array twice. This is not practical
particularly for Transputer arrays since they have relatively
slow I/O links. To deliver one real image from the //,„
process by a single Transputer would take 839 milliseconds
in theory. In practice, the time for sending a real image is
three times higher.

Experiments have been performed at Leeds to extend
APPLY to the pipelined multiple window operation to solve
this problem. This technique requires several window
operations (procedures) to reside concurrently in one
worker processor. One soft channel is used between two
adjacent procedures. The first procedure receives inputs
from the host and outputs intermediate results to the second
one; the last procedure will input from previous one and
output final results back to the host through the network.
Advantages have gained from this improvement:

(1) Saving the Intermediate Results Moving Along the
Network
Intermediate results are confined inside worker
processor instead of outputting to the disc and loading
in again. They move only along soft channels
between two procedures. The speed of the soft
channel is the bandwidth of memory copying, which
it is 30 times faster than the hard link.

(2) Balancing Load for Worker Processors
Procedures in one algorithm are computationally
uneven. For instance, the 2D differentiation takes
three adds for one pixel, while the Gaussian
smoothing takes 9 multiplications. In the
implementation of the Transputer array, the former is
I/O bound and the latter is compute bound. For the
I/O bound procedure, if it is executed individually,
the performance drops for the worker processor will
have to wait when it finished computing one line until
it gets the next input. In the pipelined
implementation, there is no time wasted in waiting
the input from the host, because I/O bound
procedures act as FIFO data buffers.

Figure 4 depicts a pipeline chart of the Canny edge
operator. All these three procedures stay in one worker
processor.

The execution time of the pipelined Canny edge
detector on the Meiko with 32 T800 processors is 0.86
seconds (0.66 seconds without I/O), which is a speed-up of
more than 2 times compared with individually compiled
procedures. The image is of size 512x512. The time is
measured from when the data is ready at the host HM to the
moment that data are collected at the host H0M. The time of
the Gaussian smoothing is not included.

311

image

Gaussian

f Gradients J

None-maxima
Suppression

edge map

Figure 4. Pipeline Implementation of the
Canny Operator

7. APPLY compared with LATIN
LATIN and APPLY satisfy different application

requirements. The former is a general purpose parallel
language and the latter is an application oriented language.
However, they do share some similarities, for example,
algorithms in LATIN may have multiple processes, APPLY
can deal with multiple window operations as well; data path
is transparent in LATIN, and APPLY has hidden network
details to users. However, These two languages are quite
different in some other aspects. Firstly, LATIN allows the
inter-processor communication, but APPLY does not The
abstract APPLY machine model has defined that this is not
necessary for localised window operations. Secondly, in
LATIN, the programmer will have to specify the system
configuration. This means when an application has more
than one process, LATIN demands more processors than
APPLY does. Finally, the implementation of APPLY has
been concentrated on the efficiency of window operations,
for instance, the window buffering and border handling
techniques. Users can put efforts in image processing
algorithms, rather than work on technical details, eg.
networking and deadlock. So APPLY is more suitable for
image processing.

8. Discussion
APPLY provides a programming tool for low level

local windowing image processing, and it can also be used
in real time. The pipelined implementation on the Meiko
Computing Surface extended APPLY to deal with multiple
window operations. However, APPLY cannot cope with
data dependent algorithms, for example, the hysteresis and
the Hough transform. This is because the abstract APPLY
machine model is based on data parallelism which permits

only window operations. Future work includes studying of
new computational models.

REFERENCES

Annaratonel987.
M Annaratone, E Amould, T Gross, H T Kung, M
Lam, O Menzilcioglu, and J A Webb, "The Warp
Computer: Architecture, Implementation and
Performance," IEEE Trans, on Computers C-
36,12 pp. 1523-1538 (Dec 1987).

Crookesl987.
D Crookes, P J Morrow, P Milligan, N S Scott, and P
L Kilpatrick, "Notes on Implementing a Language
for Transputer Networks," Microprocessing and
Microprogramming 21pp. 559-566 North-Holland,
(1987).

Dewl988.
P M Dew and H Wang, "Data Parallelism and the
Processor Farm Model for Image Processing and
Synthesis on a Transputer Array," Proceedings of
SPIE Symposium 977 pp. 212-220 (August 1988).
Real Time Signal Processing XI, Society of Photo-
Optical Instrumentation Engineers

Sleighl988.
A C Sleigh, C J Radford, and G J Harp, "RSRE
Experience Implementing Computer Vision
Algorithms on Transputers, DAP and DIPOD Parallel
Processors," pp. 133-154 in Parallel Architectures
and Computer Vision, ed. I Page,Oxford University
Press (1988).

Wallacel988.
R S Wallace, J A Webb , and I C Wu, "Machine-
independent Image Processing: Performance of
APPLY on Diverse Architectures,'' Presented at the
Third International Conference on Supercomputing,
(May 1988).

Acknowledgements The authors would like to thank
Professor H T Kung, the Edinburgh Concurrent
Supercomputer Centre and the MEIKO Limited for
their support and allowing access to the frame
grabber. Thanks also goes to Ms. J Ryan for her
discussion on the early draft version of this paper.

312

