
INVESTIGATING INVARIANT PATTERN RECOGNITION
USING A FLEXIBLE DEVELOPMENT ENVIRONMENT

J. Austin B.N. Brooke

Advanced Computer Architecture Group,
Department of Computer Science,

University of York,
Heslington,

York. YO1 5DD

Scene

Scene is a flexible system in which users can produce

monolithic systems or "unix style" piped systems consisting

of a number of components each providing one operation.

They can also use either of the two standalone systems pro-

vided. The software has been developed on a Sun 3/50 sys-

tem miming SunOS 3.5. It is written in C and, apart from

the display and device specific functions, would be easily

portable to other BSD Unix systems.

A common object format is used for all data passed

between functions and between the scene system and the

operating system. The structure of this object is shown in

figure 1.

This paper consists of a short note describing a sofnvare

development environment used in research involving scene

analysis and image processing. It presents an overview of a

project using the environment which is investigating a novel

form of invariant pattern recognition based on neural net-

work techniques. The paper highlights the need for flexible

software tools which permit large scale research in vision in

an integrated and uniform manner.

The York Advanced Computer Architecture Group is

involved in a number of integrated image processing pro-

jects which involve scene analysis, image databases,

hierarchical neural network studies. All of these projects

have been based around the Scene software environment

which has been developed as a central core to coordinate

the use of common data formats and function definitions.

The major aim in producing the environment was to:

1) support various levels of user interface

2) provide a common data format

3) provide the flexibility to be applicable

to a wide range of projects

4) be open and extensible

As an example of a major project which uses the
scene development environment the implementation details
of recent work are given on a scene analysis system which
incorporates grey-scale N-tuple processing, fovial sampling
and a novel fomi of invariant pattern recognition. Briefly
the scene development environment has the following
characteristics.

This structure greatly simplifies parameter passing,

error checking, management of objects in memory, loading

and storing of objects. The structure contains two basic

items: a name of the object for identification and the type of

the object (obj_type). The remainder of the header is

specific to a particular object type and will contain a pointer

to the actual object, e.g. in the case of an image it will con-

tain a structure consisting of image dimensions and a

pointer to the actual image pixels.

The system consists of up to 3 layers (shown in figure
2): just the library functions, the library functions plus
object management layer, or as a standalone system incor-
porating a user interface.

293
AVC 1989 doi:10.5244/C.3.52



typedef struct GenObj {

char name[NAMELEN];

enum objtype obj_type;

union {

Image inig;

/* convolve list */

ConvList conv_list;

/* result list from convolution */

ResList resjist;

/* Gaussian filter masks */

DogMasks dog_masks;

/* Map that defines tuple points */

TupMap tup_map;

/* States for tuple rankings */

TupRank tup_rank;

/* State memory for testing */

TupMem tup_mem;

/* points to centre tuple maps */

TupList tup_list;

/* N-tuple testing results */

TupRes tup_res;

/* rotation/scaling invariance templates */

InvTemp inv_temp;

/* transformation codes */

InvCode inv_code;

char dummy [100];

}obj;

} GenObj;

Figure 1. Object Structure

YACC derived
textual interface

\

Presenter derived
graphical interface

S
Object management

functions

Library
Functions

A scene library exists from which users can import func-

tions into their own programs. Many standard image pro-

cessing functions and support functions are supplied, e.g.

loading and storing of images, rotation, histograming, thres-

holding, extracting parts of images, pixel access, blitting

images onto other images, various halftoning methods, con-

volutions using built in masks such as Sobel or Roberts

operators or using user supplied masks.

Users can load object management functions as well

as image processing functions into their application pro-

grams. This provides a method of storing and managing

objects in memory. The underlying method is transparent to

the user. At present objects are stored in a singly linked list

but this method may be changed, if necessary, transparently

to the user. Objects are retrieved by name because this is

the most suitable for using with the standalone command

interpreter system, but additions can easily be made to find

objects by some other method such as numerical identifier.

Two versions of the standalone system are available.
One is a command line based environment which uses a tex-
tual command interpreter. The advantage of using this
method is that it is not tied to any particular hardware or
availability of devices. This means that if speed is important
it can be run on a file server which may be faster than a
workstation. The other is a graphical interface based on
Presenter1 . This is a tool for constructing graphical inter-
faces which contains only one primitive: the region. An
illustration of the interface as it is presented to the user is
shown in figure 3. From this objects, such as buttons or
sliders which may be primitives in other graphical interface
systems, are constructed. An interface has been constructed
with it which, like the command interpreter based system,
incorporates the object management layer. Each operation
has it own region which when mouse activated brings a box
onto the screen with spaces for the required parameters for
the operation. These can be filled in by hand or taken from
the list of objects in memory. When an operation box has
been fully composed the operation is performed.

Figure 2. Scene System Architecture

294



Figure 3.

Presenter graphical interface for the scene environment

Of particular interest was the ability to support distri-

buted tools. At York an image server was available as a cen-

tral resource which permitted local storage and capture of

images and access to dedicated image processing hardware.

To permit access to this resource, network protocols were

incorporated into the scene system. This allows remote exe-

cution of image capture and processing operations.

Details of the full scene analysis system are described

in2 but the implementation aspects of the following three

sub-systems of the complete system are given in the context

of the scene system:

• Distributed invariant classification system

• Fovial sampling input subwindow system

• Grey-scale N-tuple processing

Of particular interest is how the development environ-
ment has been used to produce highly efficient implementa-
tions of these subsystems. The following describes briefly
the problems tackled.

Distributed invariant classification system

The distributed invariant classification system allows
the production of a rotation and scale invariant representa-
tion of an object for high speed matching with a number of
single view templates. The system incorporates basic func-
tions of the ADAM associative memory3 , which is based
upon neural network techniques. The scene system has
been used to develop a flexible and high speed implementa-
tion of this method which is allowing a thorough analysis of
the method's performance. The method uses a number of
tables which are indexed in relation to the output of the
fovial input subsystem. This produces the invariant
representation that is matched against the stored template.
The scene system object management layer is again used to
manage these tables and templates allowing storage
retrieval and display of the items in a simple and effective
manner.

Fovial sampling input subwindow system

The scene analysis system incorporates a polar sam-
pling input windowing system which exploits fovial sam-
pling. To support such a scheme a front end processor has
been developed that uses small adaptable N tuple
recognisers as edge detectors / circular resolution reducers.

295



Close to the focus point the circular sampling windows are

small, further from the point of focus the circles are larger.

To support such a system many tables are needed to

specify: the samples that make up each window, the posi-

tion of these windows and the mapping of tuples within

each window. Each window is processed by the grey scale

N tuple process (below) to produce an output which must

also be stored. All of these tables are stored as objects in

the object management layer of the scene system. The

whole subsystem is highly adaptable and may be easily

reconfigured to deal with different sampling structures. The

scene system has allowed the effective development of the

subsystem and has permitted flexible storage and retrieval

of results for assessment purposes.

Grey-scale N tuple processing

N tuple processing takes a tuple of pixel values from
an image and assigns a state to it. For a binary image the
binary code itself would be suffices as a state number, but
for an 8-bit grey scale image this method would allow too
many possible states, e.g. for a tuple size of 4 there would
be 2564 possible states. A method is described by Austin4

which reduces the number of states by ordering the pixel
values into a user chosen number of ranks. This produces a
more manageable number of states, e.g. a 4-tuple divided
into 3 ranks will have 51 states. The fundamental problem
with this method is speed. Each tuple must be sorted, ranked
and its state calculated. We will describe a considerably
faster method in which each tuple is reduced to an integer
code which is used to index a pre-compiled table to derive a
state. No explicit sorting, or calculation of state is needed.
It will be shown that there are 2 stages to preparing the state
tables. Firstly all valid ordering codes are generated and
reduced to rankings. A state is assigned to each ranking and
hence each ordering code can be assigned a state. A table is
then produced which directly correlates ordering codes and
states. This is a sparse table because most ordering codes
are invalid. The table is a scene object and can be used with
the standalone systems and with customised scene systems.

Summary

It has been shown how current work at York is aimed

at providing an integrated support environment for research

in computer vision. The major structure of the system has

been developed which integrate a graphics environment

(presenter) with a flexible command sub-system (scene).

This, coupled with the common data formats and distributed

processing ability, is providing an open and extensible sys-

tem into which other image processing libraries may be

incorporated. It has been illustrated how the system is being

developed along side a project, providing a test bed for the

implementation of the environment, and also an essential

research tool for the project.

1. R. K. Took, ' 'The Presenter - A Formal Design for an

Autonomous Display Manager", pp. 151-169 in

Software Engineering Environments, ed. Ian Sommer-

ville, Peter Peregrinus (1986).

2. J Austin, "High Speed Invariant Pattern Recognition

using Adaptive Neural Networks", in Proc. of

Conference on Image processing and its applications,

Warwick, UK. (July 1989). To be presented

3. J.Austin, "ADAM: A Distributed Associative

Memory For Scene Analysis", pp. IV-285 in

Proceedings of First International Conference on

Neural Networks, ed. M.Caudill, C.Butler, IEEE, San

Diego (June, 1987).

4. J. Austin, "Grey Scale N tuple Processing", pp.

110-120 in Pattern Recognition : 4th International

Conference, Cambridge, UK, ed. Josef Kittler,

Springer-Verlag, Berlin (1988).

296


