
Image Processing Applications using an Associative
Processor Array

A.W.G. Duller R. Storer A.R. Thomson M.R. Pout E.L. Dagless

Dept. of Electrical and Electronic Engineering
University of Bristol

Bristol BS8 1TR, UK.

GLiTCH is a VLSI associative processor array chip de-
signed at Bristol University. This paper summarises the
results of three studies of real-time image processing ap-
plications: image resampling, fast Fourier Transforms
and Hough transforms.

The design of the GLiTCH chip and its use in image pro-
cessing systems is described by us in a companion paper
[1]. Several applications of such a system in real-time
image processing have been studied, which show that
GLiTCH chips can be used effectively in a programmable
image processing system.

FAST FOURIER TRANSFORM
It was decided to implement the FFT on GLiTCH be-
cause it is both a useful routine for image processing
and also very computationally demanding. When im-
plemented on an array processor, the FFT serves as a
good test of the mathematic and data movement capa-
bilites of the machine. Given that GLiTCH is restricted
on memory size, and is also only a pseudo-2D array, it
was felt that the 2D FFT would serve as a good all-round
test.

FFT implementations vary considerably from machine
to machine, and it is clear that the algorithm used must
be adapted to closely match the target machine's archi-
tecture if maximum performance is to be achieved. For
bit-serial machines in particular, the time taken to calcu-
late a FFT will also be very dependent on the precision
required.

A FFT program has been written and simulated for the
GLiTCH system and even with only simple fixed-point
mathematics and unoptimised code, it has been shown
that a LARGE number of GLiTCH chips could achieve
real-time 2D FFTs (and inverse FFTs) on 256 x 256 pixel
8-bit images. Comparisons between a simple and a more
sophisticated architecture have shown that very signif-
icant speed increases can be obtained in large systems
by increasing the memory available to each processing
element. This is done by adding external storage (pos-
sibly in the routing chips) and swapping data with the
high-speed on-chip memory [1].

Basic Algorithm
The algorithm used on GLiTCH is based on the one for

the DAP, described by Davies in [2] [3], which works as
follows.

The DAP [4] is a mesh-connected 2D bit-serial array
processor with a large amount, of storage per processing
element (PE). Davies' algorithm assumes one data point
per PE, and only linear connectivity. Starting with a set
of N points, log2 N iterations of the algorithm will be
required:

1. Split each set into two halves

2. Copy the data between these two halves

3. Multiply by a value dependent on the set number

4. Add the result to the data present at the beginning

This is remarkably simple to implement, having noth-
ing more complicated than addition, subtraction and
multiplication. The sine and cosine multipliers are pre-
calculated and broadcast to the individual PEs requiring
them. When all have been stored, the calculation takes
place. The result is produced in bit-reversed order.

Data routing takes about 10% of the total time, or 20%
if the bit-reversed ordering is corrected [5]. Roughly 18-
20% [2] of the time is used setting up the sine / cosine
values. The algorithm operates in O(log2 N) time.

GLiTCH Algorithm
The basic GLiTCH architecture imposes the following
constraints not encountered on the DAP:

• Pseudo 2D connectivity

• 64 bits of memory per PE

The first of these has only a small effect as the algorithm
does not require (though can benefit from) 2D connec-
tivity, but the second is rather more serious, especially
if a very high precision for the FFT is required.

GLiTCH has been designed to allow 2 or even 3 PEs to
work together efficiently to perform complicated calcu-
lations, make use of each other's memory etc, and this
is clearly a possible approach to tackling the FFT math-
ematics required. However, combining PEs in this way
effectively wastes | or | of the processing power of the

289 AVC 1989 doi:10.5244/C.3.51

system, as only one PE in the group can be active at a
time. Hence it is very important, if at all possible, to fit
all the required data into the memory space of a single
PE. In fact, if it appears that 2 PEs will be needed, it will
be worth tring to find an alternative algorithm which is
up to twice as slow providing it requires sufficiently little
memory to fit in just one PE.

A fixed point version has been implemented using 24/28
bits to store each number. This allows an almost-perfect
2D FFT/inverse-FFT to be calculated, but typicaly 1
or 2 pixels will end up with an intensity one grey-level
different to the original. This is because the 28 bits are
just insufficient to cope with the dynamic range of values
found in a 2D FFT. Preliminary tests on floating point
indicate that it will be both approximately 20 — 25%
faster and also overcome problems of accuracy.

Results
The following results have been obtained for GLiTCH
arrays of varying sizes, all performing a 2D FFT followed
by an inverse-2D FFT on 256 by 256 pixel 8-bit images
using fixed-point arithmetic.

System size
(chips)

8
16
32
64
128
256
512
1024

Total time (ms)
Simple system

630
323
169
93
55

38.6
34
39

Sophisticated system

305
154
78

40.6
22.1
14

10.8

As can be seen, the times for the smaller systems are very
similar, but as the systems become larger the more so-
phisticated architecture starts to show its benefits. This
is primarily because of the large amount of time required
to load data into the simpler machine which is unneces-
sary in the more advanced one. This clearly makes real-
time 2D FFTs a possibility, though at some considerable
cost! Further, the extra memory available in the more
sophisticated architecture allows for greater precision to
be achieved if necessary.

These results (in conjuction with the other work in this
paper) provide a strong argument for building a reason-
ably large amount of external memory into the system,
but keeping the high-speed on-chip memory as well.

SCAN LINE PROCESSING
The Scan Line Array Processor (SLAP[6]) is a SIMD
linear array of processing elements. It provides one PE
for each pixel in a scan line of the image, and this leads
to somewhat unusual image-processing algorithms. Al-
though GLiTCH has not been specifically designed to
implement scan line algorithms, comparing the architec-
ture of SLAP (see Figure 1) with a GLiTCH system,
the only obvious addition is the 'End' registers. These
are used to provide or retrieve data when a shift between
PEs is performed. A GLiTCH system can simulate these

by reading out and writing data before performing cyclic
shifts.

The other major difference is in the complexity of PEs.
SLAP has bit-parallel arithmetic, and considerably more
memory per PE. Fisher and Highnam [7] suggest a VLSI
implementation with 4 PEs per chip, and a cycle time of
125ns.

Hough Transform
The Hough transform [8] is a well known image process-
ing algorithm which is used for extracting lines from im-
ages. Straight lines are characterised by two parameters
(e.g. p, 6, where p — x cos 9 + y sin 6)

Edges detected using a simple operator, and each edge
votes for the parameters (p,9) of the lines on which it
lies. The transformation to parameter space, in which
are votes passed to the correct parameter plane accumu-
lator is expensive to implement on SIMD machines due
to the chaotic mapping of data.

The projection-based algorithm [9] described by Fisher
and Highnam [7] is radically different; rather than pass-
ing the votes to a static array of accumulators (bins),
the bins are passed along the path of pixellated lines,
accumulating votes as they progress.

The bin for a given near-vertical line will either stay in
the same PE, or pass one PE to the left (or right), be-
tween one scan line and the next. All the lines at one
angle are calculated simultaneously. The number of an-
gles which can be calculated in a given pass is dependent
on the number of bins which will fit in a PEs memory.
If a line intersects the edge of the image, it cannot ac-
cumulate further votes, and hence it may be read out.
The accumulator is then zeroed, to simulate an empty
bin being shifted into the far side of the system. Once
the entire image has been scanned, a set of bins corre-
sponding to those lines which intersect with the bottom
of the image will remain in the PEs, and these too are
read out and placed into the accumulator array.

It is important to note that lines which are nearer to the
horizontal than the vertical can pass through more than
one pixel in a given scan line. A SIMD machine cannot
efficiently implement shifts of varying distances, and so it
is usually more efficient to transpose the image perform

data Vector Controller -*
data and

instructions

data

PE 1 PE 2 PE n -1 PE n

Image
in

Imaqe

A SLAP System out

Figure 1: Scan Line Array Processor System Architec-
ture

290

a second pass to detect near-horizontal lines. This trans-
position can implicitly performed by a GLiTCH frame-
store.

The timings below assume that the input is a binary,
edge-detected 256 square image (GLiTCH can perform
this calculation in under 4ms). The minimum system
size is the width of a scan line (256 PEs = 4 chips), and
bins must be 8 bits long, implying that only 8 may be
stored per PE. The transform was of 3 degree resolu-
tion; more accurate transforms will take proportionately
longer. In a larger system, several PEs can be assigned
to each pixel, and more values of 0 accumulated at once.
Assigning many PEs per pixel has the side effect of in-
creasing the shifing time, and the image loading time:

Chips
4
8
16

Total Time
45.45
37.08
32.94

Load Time
26.21
26.21
26.21

Process Time
41.50
22.77
13.82

Comments
The overall time shows a relatively low speed up, but the
actual processing time is more nearly linear. The over-
head due to increased DSR length when more PEs are
added would be decreased either if some other process-
ing were performed (e.g. the edge-detection) or a faster
way of loading the data were available. Considering that
the same data is loaded for each pass, if the system were
enhanced with two hundred bits of RAM per PE [1],
data could be loaded for subsequent passes in a fraction
of the time. (GLiTCH can transpose a binary image
in RAM in 0.3ms). Thus a 16 chip system can trans-
form a raw image in under 20ms. This compares very
favourably with Fisher [7] and Highnam's prediction of
SLAP taking 14-20ms for a 3 degree transform on a 512
square image, particularly when it is remembered that
the SLAP system would needs 128 chips. GLiTCH also
has the advantage of flexibility: even a small system is
capable of performing a Hough Transform to an arbi-
trary degree of accuracy if given enough time.

The scan line Hough Transform is an interesting and
efficient algorithm. Although it has only been applied to
straight lines, it can be applied to a wide range of non-
parametric curves. One important consideration is the
format of the output. The scan line algorithm produces
the 6 coordinate explicitly, but the resolution of the other
(p) coordinate is not constant across the 6 range.

IMAGE RESAMPLING
A digitised image consists of an array of discrete sam-
ples of the continuous function that is the real image.
Image resampling alters the sampling rate of a digitised
image without reference to the original scene which pro-
duced it. It is used to expand an image so that a part of
it can be examined more easily, to replace erroneous or
lost samples in a digitised image, to register two compar-
ative images of the same scene or to correct geometric
deformations caused by sensor attitude or motion.

If a new sample is required at a point between the exist-
ing samples one of three interploation methods is com-

monly used to obtain it: nearest neighbour, bi-linear,
and bi-cubic [10]. All of these are approximations to
convolution with the sine function, sinc(t) = sln(irt)/irt,
which would provide a perfect, smoothed interpolation
if it could be realised on a digital computer.

Making Use of Parallelism
A typical bi-cubic convolution requires about 15 mul-
tiplications and 45 additions for each pixel processed,
about 106 multiplications and 3 x 106 additions for a
256x256 pixel image. As the operations on each pixel
are identical and do not depend on the result from any
other pixel, the algorithm is ideal for processing on a
SIMD array.

Warpenburg [11] describes a technique for image resam-
pling where the original image is divided equally between
the processing elements (PEs) of a generalized SIMD ar-
ray. Each PE in the array executes the resampling al-
gorithm much as a uniprocessor would. Thus, a perfor-
mance improvement of factor N is claimed for an array
of TV processing elements.

This result overlooks the fact that as N increases, the
amount of the input image held by each PE decreases
and there will be more inter-PE communication needed
to process the pixels around the edge of each PE's region
of the image. Inter-PE communication is much slower
than access to data within a PEs memory so that, in
a fine-grain SIMD array (like GLiTCH) which assigns
one PE for each pixel in the input image, the inter-PE
communication becomes the critical performance factor.

Resampling Using GLiTCH
The current work investigates the use of a GLiTCH ar-
ray for resampling where each PE is used to calculate
one pixel in the output image. If the number of PEs
available is smaller than the output image size, several
passes of the interpolation algorithm are used to gener-
ate successive patches of the output image. This scheme
makes maximum use of the available parallelism since all
the processors have identical work to do. It also ensures
that the output image is available in a regular form, one
pixel per PE, and so can be easily read from the array.
However, the data reordering to align the existing sam-
ples to the grid of the required samples becomes the most
costly part of the algorithm.

If the new sampling intervals are AXr and AYr in the
x and y directions, an existing sample at x, y in an in-
put image sampled at AX and AY is moved to location
xr,yr in the output image where:

xr = x
AX
~AX~r

AY

Each PE holds an input pixel and an address xr,yr, each
calculates the values xr — x and yr — y to find the x and
y distance from the input pixel it should hold. Where
the ratio between sample intervals is a power of two,
Flanders' "musical bits" algorithms [12] provide an el-
egant means of reordering array data expressed as the
exchange of two address bits. Otherwise all the input

291

110

100

90

80

70

60

50

40

30

20

10
r\
U

^ \ \ \
~r \ \ \

'r \ \ \

r \ \ \
i- \ \ \
1- \ \ \
L \ ''''• "

4 8 16 32 64 128 256 5121024
Number of Chips

Figure 2: Maximum resample times (ms) for 256 X 256
image, solid line - nearest neighbour, dashed line - bilin-
ear and dotted line - bicubic interpolation

pixels are passed from one PE to another until each has
collected the ones it needs for the interpolation.

Results
The maximum resampling times required for the three
interpolation techniques are shown in figure 2. The times
are inversely proportional to the number of PEs except
with large arrays of chips where the time taken to load
and dump the image dominates the performance.

For nearest neighbour interpolation the required sample
value at each point is taken to be that at the nearest
integer values to xr and yr. The resulting image is ac-
ceptable where the resampling is intended to enlarge the
original pixels, otherwise the magnified interference be-
tween the spatial frequencies of the image and the orig-
inal sampling frequency makes it unusable.

Using two passes through the image, 16 GLiTCH chips
(1024 PEs) are able to resample a 256 x 256, 8-bit image
in less than 30 ms, depending on the ratios AX/AXr and
AY/AYr. If these ratios are near to one, the time falls
to about 128 ps.

For bi-linear interpolation each PE must collect the four
existing samples surrounding xr and yr. 16 chips require
at most 58 ms for large interval ratios, falling to 3 ms
with interval ratios near one.

For bi-cubic interpolation, cubic polynomials are used
to define the weighting function for a convolution of at
least 16 existing samples surrounding xr and yr. 16 chips
require at most 110 ms, falling to 4 ms with interval
ratios near one.

CONCLUSIONS
A number of image processing and image generation
tasks have been coded for arrays of GLiTCH chips. The
results show that fine-grain, associative, SIMD architec-

tures hold promise as versatile, real-time image process-
ing machines.

ACKNOWLEDGEMENTS
We wish to acknowledge the financial support of the
Science and Engineering Reasearch Council, the Royal
Signals and Radar Establishment and BP International
Limited for this work.

References

[1] Duller A.W.G., Storer R.H., Thomson A.R.,
Pout M.R. & Dagless E.L. "An Associative Pro-
cessor Array Designed for Computer Vision" Else-
where in these proceedings

[2] Davies S.T. The Implementation of the FFT on
the DAP, Centre for Parallel Computing, QMC
London, DAP Report 6.39.

[3] Cooley J.W. & Tukey J.W. "An Algorithm for
the Machine Calculation of Complex Fourier Series"
Mathematical Computing, Vol. 19, 1965, pp 297-301.

[4] Reddaway S.F. "DAP - A Distributed Array Pro-
cessor" First Annual Symposium on Computer Ar-
chitecture, Florida, December 1973.

[5] Flanders P.M., Hunt D.J., Reddaway S.F.
& Parkinson D. "Efficient High Speed Comput-
ing with the Distributed Array Processor" High
Speed Computer and Algorithm Organization eds.
D.J. Kuck et al. Academic Press 1977.

[6) Fisher A.L., Highnam P.T. &: Rockoff T.
"Scan Line Array Processors" Hardware Accelera-
tors for Electrical CAD, eds Ambler T., Agrawal
P.k Moore W., pp312-324, Adam Hilger 1988.

[7] Fisher A.L.& Highnam P.T. "Computing the
Hough transform on a Scan Line Array Processor"
IEEE Trans, on Pattern Analysis and Machine In-
telligence, Vol. 11 No. 3 pp262-265, 1989.

[8] Duda R.O.& Hart P.E. "Use of the Hough trans-
form to detect lines and curves in pictures" Comms.
of the A CM Vol. 15 No. 1 ppll-15, 1972.

[9] Sanz J.L.C.& Dinstein I. "Projection-based geo-
metrical feature extraction for computer vision: Al-
gorithms in pipeline architectures" IEEE Trans, on
Pattern Analysis and Machine Intelligence, Vol. 9
ppl60-168, 1987.

[10] Niblack W. An Introduction to Digital Image Pro-
cessing Prentice Hall International, London, 1986.

[11] Warpenburg M.R. and Siegel L.J. "SIMD Im-
age Resampling" IEEE Trans, on Computers, Vol.
c-31 no. 10, 1982.

[12] Flanders P.M. "A unified approach to a class
of data movements on an array processor" IEEE
Trans, on Computers, Vol. c-31 no. 9, 1982.

292

