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The theory of zero-crossing detection 1is
extended to include the first and second
spatial derivative of the gaussian disiribu-
tion. On the premise that phase contains a
considerable proportion of the information
content in an unknown signal, we show
that phase can be extracted from the first
and second derivatives of an appropriate
filter. It is shown that the spatial gradient
of phase can be used to obtain an estimate
for the local spectral properties of a signall.
By assigning an upper and lower frequency
cut-off to each filter, it is suggested that
false zero-crossings can be removed from
analysis.

1 INTRODUCTION

The computational theory of early vi-
sual processing developed by Marr and
his associates [4], suggested that the zero-
crossings obtained by convolving the V2G
operator with an image function forms
the basis for early visual edge detection.
To extend Marr’s approach, we recall the
early notions of Gabor [1], who proposed
representing a real signal of the form :

s(z) = acos(wz) + bsin(wz) (1)
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by the complex form:

P(z) = s(z) + jo(z) = (a — jb) exp(jwz)
(2)

In his words, The function o(z) is formed
from s(z) which ” represents the signal s(x)
in quadrature, which when added to it ,
transforms the oscillating vector into a ro-
tating vector ” . We combine the work of
Marr and Gabor. To generalise, consider
a real even function, such that the Fourier
transform of the first and second spatial
derivatives exist and are integrable in the
usual sense and:

VEf(x) =0 as |o] — oo

By the Fourier derivative theorem, we
have:

(@) = jwF(w) (3)

and

f®(z) = —w?F(w) (4)
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If we consider convolving the above equa-
tions in the spatial domain with a single
cosine grating then we obtain as an equiv-
alent representation in Frequency space:

F(fO(@) * cos(woz)) = j5wF(w) (5)

(8(w+ wo) + 8(w — wy))

and

F(IO (@) cos(wes)) = 3" F () (6)

(6(w + wo) + 6(w — wy))

The closed form solution to these equa-
tions can now be found in the signal space.
The simplest route is via the IFT of the
above equation. If we let I, and I, repre-
sent the solutions to the convolution of the
first and second derivatives respectively,
then we find that:

I = .;. /_ Pt 8 0w0))
(7)
exp[jwz] dw
1 o0
L= g [ P +ia-u)
(8)
exp[jwz] dw
Using the property that F(w) = F(-w)
because f(z) is real and even, then:
O(z) = %— = ;—: tan(w,z) (9)

The first and second derivatives of an ap-
propriate function can therefore be repre-
sented in phase space. The importance of
phase in signal processing has already been
applied to the stereoscopic correspondence
problem [3]. It would also be appropriate
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to quote Lange [2] , who wrote ” if it is
possible to allot a mean frequency, with de-
fined phase position to a narrow spectrum
of a fluctuating process, then it is also pos-
sible to allocate a certain reciprocal phase
position to two fluctuating processes of the
same frequency band. ”. In addition, we
can easily show from the disparity gradient
limit, that signals differing in spatial fre-
quency by more than 1.25 octaves violate
a disparity gradient limit of 1.

Having obtained a defined phase position,
we will now show a simple method for
spectral analysis. Keeping the same no-
tation, it is easy to show that:

d[tan='(6(z))] W,

dz - in?

£8in’(woz) + (cos?(woz)

(10)

Where w, is the instantaneous frequency
of the signal under analysis, and ( rep-
resents a skewed non-linearity in phase,
which in this case is also equal to the fre-
quency under analysis. Thus a filter op-
erating under the conditions of non-linear
phase response, introduces additional os-
cillatory behaviour. From this type of re-
sponse, it would be difficult to isolate the
spectral component alone. However, by
utilising the zero-crossing elements from
the real and imaginary components, we
notice that the non-linear term is of no
consequence under these conditions. This
is because the zero-crossings described,
correspond to the poles and zeros of equa-
tion 9. Therefore, referring to equation
9 in phase space, the zeros represent 0
and 7 rads, and the poles represent +/- %
rads from the convolutions with the first
and second derivatives respectively. Thus
it is possible to interpolate between zero-
crossing elements of the real and imag-
inary components and obtain the spec-
tral component from the gradient, which
is equivalent to interpreting the displace-
ment of zero-crossings as a spatial wave-
length.



We notice in passing, that the same princi-
ple could be applied in reverse towards the
maximal energy response from each sepa-
rate element, which we would expect to
occur in quadrature with Zero-crossings.
This is, however, not always the case and
a current area of investigation. We should
also observe that signed responses from
these filter pairs represented as an arc tan-
gent may be either +/- , +/+ ,-/+ or -/-
which only occurs in a unique region of the
filter pairs receptive field. There is there-
fore no phase wrap around attributed to
the filter alone. This is not the case for os-
cillatory based quadrature filter pairs un-
less they are truncated.

By assigning an upper and lower frequency
cut-off based upon the bandwidth of the
current filter pair, we can effectively filter
out regions of the image which do not sat-
isfy the expected frequency range for each
band-pass filter. This is of no concern,
since we would apply several band-pass fil-
ters in general.

2 RESULTS

Results are presented for the phasic re-
sponse to a sinusoidal grating. Figure
1.a shows the phasic response without the
knowledge of the spectral properties of
the sinusoidal signal. In figure 1.b we
present the reconstruction of linear phase
of an unknown sinusoidal grating from
zero-crossings and the spectral estimates
(figl.c). Figure 2 shows the the applica-
tion of this technique to real data. No-
tice that we have used the upper and lower
cut-off frequencies of the filter to remove
regions where we might expect false zero-
crossings to occur, and isolated image re-
gions with the spatial frequencies of inter-
est.
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Figure 1: (a) Reconstruction of phase from
a sinusoidal signal of 1/32 cpp (Cycles
per Pizel). (b) Linear phase reconstructed
from Zero-crossings.(c) Spectral estimates
from Zero-crossings shown as a wavelength
for clarity. Errorin measurement found to
be +/- 3.1%.
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Figure 2: (a) Raster line scan of a
real tmage. (b)Spectral estimates from
Zero-crossings for filter pairs weighted to-
wards 1/16 cpp. (c) Thresholding based
upon a lower and upper cut-off of 1/2 oc-
tave from fig4.b. (d) Thresholding applied
for filter pairs weigthed towards 1/8 cpp.
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3 CONCLUSION

That zero-crossing elements can be used
from first and second derivatives to recon-
struct phase space is unexpected. How-
ever, the phase response is highly non-
linear from these filter pairs. We have
shown that it is possible to achieve an
approximation to linear phase using the
properties of zero-crossings from the 1st
and second spatial derivatives of the Gaus-
sian distribution. More simply, the results
imply that the spatial separation of edges,
as opposed to edges themselves may well
provide a useful matching criterion for cor-
respondence problems.
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