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Kanade [1] proposed a heuristic for interpreting shape
from contour. To apply his heuristic, skewed symmetries
have to be found. In this paper, an algorithm for finding
skewed symmetries in a planar point set is proposed. The
method requires a simple rotation and midpoint finding,
followed by a Hough transform. A variant of the Hough
transform is reported. It is based on interpreting it as a
rotation followed by a projection. This variant requires
only a one dimensional accumulator array. An imple-
mentation is outlined. We then show (theoretically) that
the skewed symmetry finding algorithm is as robust as the
standard Hough transform (Hough transform for finding
lines).

Shape from contour is the interpretation of a single
line drawing as the projection of a three dimensional en-
tity. Kanade [1] proposed the following heuristic for shape
from contour :

"A skewed symmetry depicts a real symmetry viewed
from some (unknown) view direction."

A "skewed symmetry" is a planar point pattern such
that iff (x,y) exists, (-x, y) exists. The x axis is called the
"skewed transverse axis" <*; while the y axis is called the
"skewed symmetric axis" sjfc. If t^ and sj are orthogonal,
then the skewed symmetry degenerates into a reflectional
(real) symmetry. Fig 1 are examples.

Much work on detecting reflectional symmetries in a
given polygon or a simple closed curve has been reported
[2 - 6]. The above results are not directly applicable to
the more general notion of point sets. Highnam [7] re-
ported a method for finding reflectional ( and rotational
) symmetries given a symmetric point set. Marola [8, 9]
reported a method for detecting reflectional symmetries
in a gray level image assuming that the image is sym-
metric in a neighborhood. The most serious deficiency of
the above results is their presupposition that the input is
symmetrical.

Figure 1: Some skewed symmetric figures taken from [1].

In this paper, we wish to treat the more general prob-
lem of finding skewed symmetry - which is more general
than reflectional symmetry - in ( planar ) point sets with-
out requiring that our input is symmetrical.

The only related research we know of on finding skewed
symmetry is Friedberg [10], who assumed that the input
is skewed symmetric. This allows him to use moments to
formulate the problem.

Ponce [11] derived a necessary condition for two points
to be skewed reflective to each other. A method is also
sketched for using this condition to detect reflectional
symmetry. However, the condition involves the curva-
tures at the two points and hence is limited to smooth
curves. Our algorithm is applicable to general point sets.

Levitt [12] proposed an elegant method to detect re-
flectional symmetry in a point set, without requiring a
priori that the point set be symmetric. Suppose there are
n points. For each of the nC2 pairs, the midpoint is found
and assigned a direction perpendicular to the line joining
the pair. To this is added the n points with no direction
assigned. A Hough transform is then used to find straight
reflectional symmetry axes.

We may extend Levitt's method to detect skewed sym-
metry in the following way. Suppose Pi, Pi is a pair of
points. Then instead of storing the angle of the perpen-
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dicular, we may store the angle j3 of line P1P2 with some
reference axis on a third dimension of the Hough space.
High counts on the Hough space correspond to a skewed
symmetric axis s* where the skewed transverse axes are
at the same angle with respect to Sk (Fig 2).

Figure 2: The line joining mapping points are all in the
same direction /?. Moreover, the locus of their midpoints
is the skewed symmetric axis s*. If Sk is straight, we
may accumulate the midpoints together with their j3 in
a three dimensional Hough space to detect skewed sym-
metric axes.

In addition to a three dimensional Hough space, this
approach has a serious problem. Consider Fig 3. By
successively covering segment ab, be, and cd, we obtain
the skewed symmetric axes Ska to Skd ! Since the Hough
transform, does not encode connectivity, this suggests that
the Hough space will have many confusing high points.
Hence this method must be abandoned. Below, we de-
scribe a new method which is cleaner and furthermore
requires much less storage.

Tigure 3: Four skewed symmetric axes Ska to Skd may
be produced by successively covering line segments ab, be
and cd.

AN ALGORITHM FOR FIND-
ING SKEWED SYMMETRY

A skewed symmetry is a parallel projection of a reflec-
tional symmetry. Suppose p', q' are two three dimensional
points and p' reflects onto q' ( and vice versa ). Then we
shall say that they are mapping points or a mapping pair.

Suppose r', s' are another mapping pair. Then clearly
pJq'//r's'. Now since a parallel projection is an affine
transformation, parallelism is preserved. Hence upon pro-
jection pq/ /rH, where p is the projected point of p' etc.
We shall call £pq the mapping direction.

Let the mapping direction make an angle a with the
positive x axis.

Algorithm (Skewed symmetry finding)

Input : a two dimensional point set.

1. a « - 0 ;
;;; the initial mapping direction is parallel

to the x axis

2. clear the midpoint-array;
rotate the point set by —a about the ori-

gin;
;;; after the rotation, the mapping direc-

tion is parallel to the x axis

3. for all lines L parallel to the x axis do
if two points p, q lie on the L then

record the midpoint of p and q on mid-
point-array;

endif;
endfor;

4. use a Hough transform to find straight lines in mid-
point_array;

5. increment a;

6. if a > 7r, then exit else goto 2.

A VARIANT OF THE HOUGH
TRANSFORM FOR STRAIGHT
LINE FINDING

The Hough transform is an one-to-many mapping of a
point into a curve in the transformed space. Duda and
Hart [13] defined the following equation for a straight line,
which serves as a mapping :

p = XQCOSO + yosind (1)

where p is the distance of the line from the origin and
9 is the angle of the perpendicular (Fig 4).

For each point (xo, j/o), they increment all (p, 9) satis-
fying (1) in a /> — 6 accumulator array. Detecting straight
lines is converted to the problem of detecting high counts
in the accumulator array. This transform is known as
the Hough transform. It is ingenious because choosing
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Figure 4: A parameterization of line 1 used by Duda and
Hart [13].

an appropiate quantization of the accumulator array will
permit multiple lines to pass through two nearby image
points. The quantization errors of the image points is
combatted by the quantization errors of the accumulator

array

If p is quantized into mi cells and 6 into m.2 cells, then
we have a mi x m.2 accumulator array. Here we propose
a modification of the Hough transform. Recall Fig 4.
Suppose the x-y plane is rotated by — 6 about the origin.
Then the line 1 would become a line parallel to the y axis.
If 1 is then projected to the (original) x axis, the detection
of 1 is equivalent to the detection of high counts along the
x axis. Actually the distance from the origin on the x axis
is equal to p. Hence the x axis may be quantized in the
same way as the p axis of Duda and Hart.

The rotation followed by projection is described by

[ ,' 1 - r i n 1 f cosd sin9 ] \ x ° ]
I * o ] - I 1 0 J [ _sin6 cose \ [ y o \

position to the accumulator cells. Exactly the same can
be done to the variant to detect collinearity.

Note also that the skewed symmetry algorithm involves
(1) a rotation, (2) midpoint finding, (3) a rotation and (4)
a projection. (2) and (4) are trivial. Efficient algorithm
[15] exists for rotation. Moreover, we show in the next
section that (1) does not involve a real rotation.

AN IMPLEMENTATION OUT-

We sketch an implementation of the skewed symmetry
finding algorithm in this section. The image array is a
finite grid which is the result of quantizing the image
points. In effect, any image point pr that lies within
square sp of the grid is quantized to its center p. Suppose
we have two such quantized points p and q. Consider the
line formed by the true points, i.e. prqr- Then the orien-
tation of this line is limited by a pair of corner points of
squares sp and sq. Let call this range of orientations by
Rpq (Fig 5).

\

\
\

\
\

\

x'o ] = yosin6 (2)

where (x'0,0) is the transformed point. This is exactly
(1) when x'o is replaced by p.

By varying 9 and repeating the above, the variant may
find all lines in the image.

Because (1) and (2) are exactly the same, the time com-
plexity of the two transforms are strictly equal. However,
if done serially, the variant need only have a one dimen-
sional accumulator array of mi cells. Hence the space
complexity of the variant is a factor of l/m.2. Moreover,
the variant is more suitable for highly parallel implemen-
tation because it divides the task into mi independent
subtasks.

The Hough transform ( and the variant ) is no more
than a method for finding colhnearity. A line segment
has both collinearity and connectivity. That is, points
on the segments are connected. O' Gorman and Clowes
[14] solved this problem by attaching the original (XQ, ?/O)

Figure 5: Limits of orientations of prqr

Given p and q, we may find its midpoint mpq. Both p
and q are integers. Hence mpq may either be an integer
or an integer with a fractional part of 0.5. We shall store
mpq up to an accuracy of 0.5. ( One way to implement
this is to map mpq to an array twice as fine as the image
array ).

Since

Pr=P±A
qr-q±A (3)

where A is the quantization error. The true midpoint
mrpq is

mrpq = (pr + qr)/2 = (p + q)/1 ± A = mpq ± A (4)

In other words, the quantization error of mpq is the
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same as the quantization error of the image array. Let us (1980) ppl435-1445.
then call the square around mp? by sm.

The physical meaning is as follows : Suppose we wish
to rotate p and q by —a. Then if and only if a G Rpq,
there exists some pr and qr such that LpTqT = a. More-
over, there exists some midpoint mr = (pr + qr)/2 which
lies in sm. Hence if we are to rotate by —a, then the mid-
point mpq would be the midpoint subjected to the same
quantization error of the image array.

Suppose we have n points in the image array. For each
of the nCi pairs p, q, we compute mpq (and store it at
twice the accuracy) and attach Rpq to it. The result is
stored in a all_midpoint array 1 ( which is twice as fine
as the image array ). Now suppose we wish to make a
rotation of the image array by —a. We need only suppress
all midpoints for which a 0 Rpq. Thus no actual rotation
is involved and as alluded to above, no accuracy is lost.
We may then use a Hough transform to the midpoint
array.

Since the midpoint array has the same quantization er-
ror as the image array ( it is as good as if the midpoint
array is acquired directly from the real image ), the sym-
metry finding algorithm is thus as robust as the standard
Hough transform (Hough transform for finding lines).
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