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Diffusion Smoothing (DS) implements the smoothing by

directly solving a boundary value problem of the diffusion

equation — = b V2u with explicit or implicit numerical

schemes, it provides a uniform theoretical base for some

other smoothing methods. It has shown that the elegant

Gaussian smoothing (GS) is equivalent to the initial value

problem of DS, and the widely-used Repeated Averaging

(RA) is a special case of the explicit DS. This paper

further proves that Spline smoothing (SS) is a special

case of the explicit DS with a "convex corner cling"

boundary condition. This result coincides with Poggio's

conclusion However, our proof starts from the diffusion

smoothing theory instead of regularisation theory and is

given in the mask form, thus is simpler and more

straightforward. Moreover, it makes us possible to

explicit the scale space behaviour of spline smoothing.

1. Introduction.

In computer vision, Gaussian Smoothing (GS) is a well-

known method due to its -lc.gr.rt properties; whose widely

used form is Repeated Averaging (RA) [1,6]. Spline

smoothing (SS), initially used to surface approximation,

can also be used to smooth surfaces.

Apart- from then % [2,3,4,5] discussed a method

using the diffusion process to do surface smoothing, or

the Diffusion Smoothing (DS) method. This method

implements the smoothing by directly solving a boundary

value problem of the diffusion equation ~ = bV2u with
at

explicit or implicit numerical schemes.

The DS method has some advantages: 1) It provides

a uniform theoretical base for several different smoothing

methods, e.g., GC is equivalent to the initial value

problem of DS; RA is a special case of the corresponding

explicit DS; 2) The implicit DS version works faster in a

scale space and produces denser intermediate results

without extra computation. 3) It provides an easier and

more reasonable way to treat the boundary condition, e.g.,

shape preservation at the surface margin using a "small

leakage" model. 4) It can also be applied to intensity

data processing, drifting object smoothing [5] and

symmetry axis elicitting [9], etc.

In this papCT. we further include SS into DS by

showing that SS is a special case of the explicit DS with

a "convex corner cling" boundary condition, and discuss

the behaviour of SS in scale space.

2. Surface smoothing using cubic B-
spline.

Surface spline smoothing method not only gives a smooth

version of the surface but also preserves the

convexity/concavity of the overall surface shape in the

processing [7], thus it seems an attractive smoothing

methods.
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[up,q ~u(xp,yq) lp><? =o(i)m-i) of a surface u(x,y)>0

which is discretely sampled on a square mesh n:

[xp=x0 + ph, yq =yo + qh I p>? =o(i)m-i]> the

intersection of the surface boundary L and the mesh TC is

a set L% = {(s,r) \0<u^ ,(s,)eL , 0 ^ , r s m - i h where m

is the mesh width, h>0 is the mesh step.

First, along the boundary LK, we extend the raw

data surface {uPiq l M = O(i)»i-i) one node outwards

from the surface:

M,_I, = 2 M , , - M, + 1 . if M,_!, $ L

H,,_l = 2H,>r - M,,+i if M,,_i $ L

«^+i = 2 M , , - H , ,_ ! if H , , + 1 ^ L (l.y)

Second, holding y constant in u(x,y), we approach

the surface u(x,y) in the x-direction and get the spline

surface

SMx,y)= (2.x)

and holding x constant in Sxu(x,y), approach the surface

Sxu(x,y) in the y-direction to get the final spline surface:

SySxu(x,y)=

Z Z «
i=-\ <=-i

(2-y)

Third, replacing u(Xi,yj) with M,y gives discrete

values of the spline approximation of the surface u(x,y):

oO= Z Z «.-j •.•(«) v>
y = - l < = - l

(3)

Where (j>,(̂ ) and ^ ( y ) are in the forms of cubic B-spline

function £23Q:

~ - (4.x)

(4.y)

So, after spline smoothing, the raw data

{up,q \p,q=o (i) m - i ) will be changed to

= Z Z «.- (5)

Owing to the properties of the cubic B-spline

functions, this approximation has the following

characteristics: 1) The surface approximation is of C2

continuity and O(h2) accuracy. 2) The surface convexity

and concavity are preserved. 3) The computation can be

done locally and parallelly within 3x3 windows.

Repeatedly using this spline surface approach, the

approximation will converge to a smooth surface with C2

continuity which preserves the global shape of the

surface.

3. Spline Smoothing, Gaussian
Smoothing and Repeated Averaging.

Using the mask form, it is easy to prove the result below:

Theorem 1. Cubic B-spline surface smoothing is a

special case of repeated averaging or

discrete Gaussian convolution.

Proof: Due to the compactness of the cubic B-spline

functions, at any mesh node (p-i) or (q-j) which is

beyond the interval (-2, 2), we have

O 3 ( p - i ) » 0 or Q.3(q-j) = 0 (6)

Rewrite the spline approach formula (5) as:

Z S"PA = Z S "<•,/ « S ( P - 0 "3(<7-7 (7)
j=q-\ i=p-\

Note that

£13(0) = 4 and Q3(±l) = \ (8)

We get a typical Gaussian-like mask form of the surface

spline smoothing as below:
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Figure 2. Surface spline smoothing mask.
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So, spline smoothing is a special case of RA.

Repeatedly using this mask approximately corresponds to

filtering with a Gaussian [4,6].

Q.E.D.

This result coincides with the conclusion in [8] that

"the solution to the variational problem

E ( / * - S(xk))
2 + \\\\S"(x)\\2dx in the case of inexact

*=i

data on a regular grid (and appropriate boundary

conditions), can be obtained (a) by convolving the data

with a filter, (b) which is a cubic spline, and (c) which is

very similar to a Gaussian."

However, by starting from the diffusion smoothing

theory instead of regularisation theory, the proof is given

in the mask form thus it is in a simpler and more

straightforward style. Moreover, it makes us possible to

explicit spline smoothing's behaviour in scale space.

4. Spline smoothing
diffusion smoothing.

and explicit

As well as repeated averaging has been proved as a

special case of the explicit diffusion smoothing, we now

discuss the relationship between spline smoothing and

diffusion smoothing.

Theorem 2. Surface spline smoothing is a diffusion

process mth a "convex corner cling"

boundary condition:

(10)
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Figure 3. The general explicit DS mask.

Where 0 S(o< 1 is the weight coefficient, ij = 0 (1) m-1

in the spatial step h,k =0 (l)<*> in the diffusion time

step x, b > 0 the diffusion coefficient and p
h2'

du

Comparing this general DES mask with the spline

smoothing mask in Figure 2 gives co = \ and P = \ .

Setting x = h = 1 yields the diffusion coefficient b = j .

So spline smoothing is a special case of the explicit

diffusion smoothing.

Because the boundary treatment is performed with a

linear extension formula (1), surface values at some

points are invariant during the smoothing process. These

points are just the convex corner nodes of the LK shown

in Figure 4 as bold dots and are grouped into a set LJ =

S m-l, 0 S * < - ^ '

(9.0

1,- =/

where f is the input data surface given at the initial time

of the diffusion process, L is the surface boundary and L°x

the "convex corner" node set of L% whose meaning will

be clear in the proof.

Proof: To prove that DS includes SS, we appeal to the

general explicit DS scheme and its mask. This scheme is

a linear combination of the normal and oblique cross

explicit schemes in [2]:

ZlZ
77

Figure 4. Convex comer node set L £ (blackened dot nodes

in spline smoothing.

This means that under such a boundary treatment, the

spline surface must cling to the input data surface on the

L"% throughout the diffusion process. In return, we name
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it a treatment with the "convex corner cling" boundary

condition formulated as in (9).

Q.E.D.

Corollary. Repeatedly using the surface spline

approach n times approximately

corresponds to filtering with a Gaussian

nation is V - .whose standard deviation

Proof: Because SS is a special case of the diffusion

process presented as in (9), by setting t = n and b = -g-

in the following relationship (11) between Gaussian scale

a and diffusion time t, the conclusion follows.

(11)

Q.E.D.

5. Scale Space Behaviour of Spline
Smoothing.

We compare the scale space behaviour at the surface

boundary and computational performance of spline

smoothing with that of implicit diffusion smoothing.

First, the cubic B-spline smoothing is a special case of

explicit diffusion smoothing. Due to the constraint of

numerical stability, it promises a much lower

computational efficiency than the implicit diffusion

smoothing in the scaled space (cf. [4]).

Second, the surface boundary treatment in spline

smoothing leads to the smoothed version cling to the raw

data surface at those convex corner nodes at the

boundary. In the case of once approaching to the noise-

free data, this in variance would not be a problem, even an

advantage; but in the case of repeatedly smoothing the

noisy data, it might provide false information about the

surface tendency at the boundary and cannot be corrected

throughout the whole process, whereas the surface

boundary treatment is better in the diffusion smoothing

with a "small leakage model" where surface curvature

signs are preserved at the surface boundary [5].

Third, the weight coefficient co = -f in the proof of

theorem 2 suggests spline smoothing mask is not an

isotropic filter while many other diffusion smoothing

masks can be isotropic ones. 276

Section 6. Summary.

In this paper, spline smoothing has been proved as the

diffusion process with a "convex corner cling" boundary

condition, which explicits spline smoothing's relationships

to Gaussian smoothing, repeated averaging and diffusion

smoothing;then the scale space behaviour of spline

smoothing is compared with that of implicit diffusion

smoothing.
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