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This paper describes work on the implementation of a
Chromosome  Classification system in which the
representation of structural descriptions, generic control
strategies and domain specific knowledge is made explicit. A
"Best—First" strategy is used to make an initial interpretation of
the data which may then be refined using domain specific
knowledge.

The work reported here forms part of a larger project to
develop ‘Techniques for User-Programmable Image
Processing’ (TUPIP). The objective in this project is to
develop a system in which image interpretation tasks can
be specified without the need for a detailed understanding
of programming techniques and interpretation strategies.
The aim is to demonstrate how a system able to operate
from a declarative task description could be constructed.
As part of this project we are investigating the use of
knowledge based techniques to generate a declarative task
specification.

INTRODUCTION

In this paper we describe the application of knowledge
based techniques in the interpretation of complex dataand
demonstrate a model based scheme for identifying optimal
model matches. We are using a commercial frame-based
Al development system to build generic object description
and interpretation modules to which domain specific
knowledge is added in independent modules. A general
discussion of this approach and the issues involved is given
elsewhere[S]. Therefore only a brief summary of the
principal issues is given in the system overview section.

Most previous work in pattern recognition in general and
chromosome classification in particular has focussed on
the development of procedural approaches[2,4]. The
success of such approaches is limited by the ingenuity and
foresight of system developers in anticipating exceptional
situations. The promise of knowledge based approaches
lays with their potential to enable alternative
interpretation strategies to be defined independently of
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one another and of any particular task. This is achieved by
making task requirements and interpretation strategies
explicit as separate components of the task specification.

Chromosome Classification

During cell division the genetic material of cells is
arranged in a set of chromosomes. When suitably
processed and viewed down a microscope these
chromosomes appear as dark ribbon like objects with a
constriction at a characteristic point along their axis. The
position of this constriction, measured as a proportion of
the length of the chromosome is known as the centromeric
index. The size of the chromosome its centromeric index
and pattern of stain uptake enables characteristic
groupings to be identified and a Karyotype formed as
shown in Fig 1. Such karyotype’s are used in medical
diagnosis to identify genetic abnormalities. It is the
recognition of these characteristic groupings which we are
seeking to mimic. This is a complex task of global
optimisation in which attention must be paid to
recognising both the similarity between paired
chromosomes and the distinguishing features of
characteristic variant forms. It is the complexity which this
brings to the description of biological systems such as that
considered here which distinguishes this work from other

M 1380 11
R

s -
$2 83 ¢

{ 2 3 4 5
¥ % L a - -
- - — = 8 = - L - —z- v —u"‘—v,_—‘
& § o f t . - = * ?
6 7 B 9 1@ i e
g s & ¢
13 14 15 16 7
13 28 21 2z
Qiult when dong ...
TEST
Slide HS:SMIE
Cell # 4
e bre
[ 369
Fig 1. A Chromosome Karyotype
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work being carried out in our laboratories on the
application of a user programmable vision system to the
inspection of complex mechanical assemblies[6].

We have chosen to base our work on Chromosome
classification because of our previous experience in
developing procedural methods for Chromosome
Analysis[2,4] and because it is a well defined and complex
classification task for which traditional methods have met
with limited success.

Most previous work on the application of knowledge based
systems to Chromosome Analysis has sought to address
the whole process[3,7]. We believe that it is better to
address the many fundamental issues of representation
and control from the more constrained aspect of
classification before seeking to develop a larger scale
scheme for the complete task.

SYSTEM DESCRIPTION

Overview

In previous work under the TUPIP project we investigated
the development of an object based image interpretation
environment[1]. As a result of that work we concluded
that the object paradigm was useful for creating systems
which could be described in a tree like structure but that it
was not suitable for describing more complex structures
such as those required to describe a karyotype as an
assembly of chromosomes. This problem arises because
for example a karyotype can neither be described as a
specialisation nor a generalisation of a chromosome.
Rather a karyotype should be represented as an assembly
of chromosome entries with both the karyotype and the
chromosome described as a specialisation of a common
abstract component. Another problem encountered in
our previous work concerned the representation of control
requirements. The Petri Net model used enabled the
specification of control to be made explicit but failed to
reduce dependency between modules to an acceptable
level. As a result the association between functional
methods and objects was in certain cases arbitrary.

The representation used in the work described here
overcomes both these limitations. It supports both the
construction of hierarchical object based descriptions and
the construction of composite structures to describe the
assembly of sub-parts. The basic structural unit of the
system is the frame or schema. In our current work
execution is controlled through a production system. This
enables modes of interaction between modules to be
separately specified and avoids arbitrary associations
between the representation of control and descriptive
structures.

Control Strategy

The control of interpretation in this system is by a
combination of goal driven backward chaining, data driven
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forward chaining and model guided strategies. Backward
chaining is used to identify achievable sub-tasks by tracing
along both the has-part and inheritance relations. This
leads to the generation of goals for the instantiation of
each element along the chain until a target component
which can be instantiated is identified. Goals are then
generated to obtain values for the parameters of the target
component. Basic components such as blob or ribbon
features are instantiated first and then used as a basis for
the instantiation of higher level chromosome and karyotype
components.

Model based control operates to identify
correspondences between empirical data and
predefined models. When a complete set of parameters
have been obtained for a component an appropriate
matching model is identified. In the case of basic
components such as blob or ribbon features this simply
involves testing that their size and shape are for example
within a predefined range. In the case of components
with variant forms such as chromosome models, a
bayesian metric is used to identify the most closely
matching model.

Finally data driven control is used to update the
closeness of match of structures and to update displays.

Model Matching

Closeness of match is assessed by computing the
normalised distance in parameter space between data
values and model parameters. The distance measures
used are normalised with respect to the standard
deviation of the model parameters. A match is
identified by first identifying the model which most
closely matches a candidate. The closeness of match of
each candidate to that model is then assessed and the
model which most closely matches the candidate
chosen. Once a pair-wise optimal match has been
identified neither the data nor the model are
re—evaluated for matching.  This non-exhaustive
strategy has been adopted to speed up the identification
of initial matches and is based upon the premise that an
exhaustive search is unlikely to significantly improve
matching. Also the use of a filter to avoid the
consideration of very weak matches has been
demonstrated to significantly improve performance.

Structural Description

There are two specialisation hierarchies in the system.
One is a model hierarchy which is used to describe the
distinguishing or prototypical characteristics of structural
components. For example the prototypical properties of a
blob might be its size, compactness and grey level
appearance, described in terms of either band limits or the
mean and standard deviation of typical values. A ribbon,
which is a specialised form of a blob, inherits the properties
of the blob and is also described by additional properties
relating to its elongation and axial properties. The
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Fig 2. Model description hierarchy.

relationship between typical model components is
illustrated in Fig. 2. The model system is equivalent to
what in cognitive processes terminology is referred to as
medium term memory.

Another hierarchy is used to describe components such as
blobs, ribbons and chromosomes which have been
identified. The structure of this hierarchy reflects that of
the model hierarchy, as shown in Fig 3 and is in effect a
mapping between the model representation and the
empirical data. This structural description is equivalent to

what in cognitive process terminology is described as short
term memory.

Relationships

Both reference links and inheritance relations are used in
the system. The has-part relation is an example of a
specially defined inheritance relation used to provide
cardinality as a property of the part - sub-part relationship.

Two examples of reference links are the model-of and
model-of-kind relations. These reference links are used to
associate model descriptions with their instances and with
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their generic classes respectively. The model-of-kind link
enables the creation of instances of a particular class to be
co-ordinated. This is important where the instances of a
class are described by a group of variant models as
illustrated in Fig 4. In Fig. 4 the relationshipsbetween the
three shaded boxes enable all variants of the entry class to
be identified so that an instance of entryl can be created.

Model Description

Most of the knowledge used in the current system is
generic with only a little additional domain specific
knowledge. Clearly the task specification is domain
specific. In this case the task definition includes a
definition of how the karyotype is displayed, the number of
entries in the karyotype and the number of chromosomes
in each entry. The model also defines values for the mean
and standard deviation of the size and centromeric index
for each chromosome group. There are also a set of
priority values associated with each variant model to
enable the more easily matched models to be identified
and tested first. All the model parameters are
programmed as static values but could easily be computed
in a training phase from an observation of experimental
data.

Implementation

This work has been implemented using ART 3.1 on a
SUN 3/160 workstation. The rule base currently
consists of 5 display rules and 30 rules for general
control. There are currently no application specific
rules apart from those used to display the results.
However it is expected that a small number of domain
specific rules will be needed to recognise when an
acceptable classification has been found or to initiate
perturbations of the initial classification in seeking to
identify a more optimal classification. Such rules would
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for instance be used to spot the translocation of genetic
material between chromosomes.

RESULTS

With a reduced subset of chromosome data designed to
test the rule base an error free classification is
consistently achieved. The squared bayesian distances
used to select model matches are shown for a typical
case in Table 1.

Data()): Size |46.0 (360 (360 [33.0 |28.0
Cent. | 0.475 |0.40 [0.44 |0.275 |0.35

Model(®:

Size Cent.

41.3  0.50 26| 164| 33.1| 291.8| 639

+3.0 +0.16

397 039 281 23| 11.8] 1226| 177

+2.6 10.02

329 046 9.4 17 29| 2060| 204

+2.3  £0.02

30.5 0.27] 171.8| 36.6| 94.8 13] 119

124 10.01

242 035] 857| 239| 381| 455 1.7

+2.9 10.05

Table 1.  Normalised distance of chromosome

data(1) from model description(?) in parameter space
using size and centromeric index (Cent.). The model
parameters of mean value and standard deviation and
were obtained using 100 cases for each model.



CONCLUSSION

This work has demonstrated the use of knowledge
based techniques for chromosome classification and
illustrates how inference strategies may be built
incrementally using generic mechanisms. The results
illustrate that performance similar to that obtained using
procedural techniques can be achieved. Clearly the
main disadvantage is the time taken to make the
classification. This is mainly a characteristic of the
development environment used. The techniques
employed could easily be transformed into a more
efficiently executable form once the principles of design
have been identified. Current work is directed towards
the development of an interface to image processing
modules for data acquisition.
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