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A method for hypothetising 3D configurations from an image,
using a perspective model, is described. To guarantee the ro-
bustness, a probabilistic approach has been chosen. The van-
ishing points are detected using a sampling based on a
statistical study of the uncertainty and the lines are classified
using a maximum likelihood test. Classes of lines are hypo-
thesised to be perpendicular in a similar way. The hypotheses
are hierarchically built and each of them is assigned a score,
using a Bayesian approach.

This paper presents a method for grouping lines that are
hypothesised to be parallel or perpendicular in a
3-dimensional scene from a single image. This is achieved
by exploiting both perspective transformation and general
geometric information on the type of the scene.

This work is part of a project which is concerned with the
location of a robot in an environment using a CAD
description, from a single view. In this application the views
are indoor scenes of nuclear plants.

The scene mainly consists of parallel and perpendicular
lines with privileged directions i.e. vertical and two
horizontal directions corresponding to the wall limits. This
is the case for most indoor scenes. The knowledge of the
main directions directly deduced from the image is of a great
interest before applying a matching strategy with the CAD
database because it considerably prunes the search space
[71.

A full and flexible interpretation of the line directions is
required, in order to have alternative solutions in case of
failure of one hypothesis in the matching stage, and to
guarantee robustness by minimising the number of
parameters required by the algorithm. We use a
probabilistic approach allowing us both to deal with
uncertainty and produce a significance score to each
hypothesis.

A number of methods for grouping parallel lines has been
proposed [2,3,8,9]. All are based on the search for vanishing
points in a perspective model by exploiting the property of
parallel lines in the 3D space i.e. the perspective projection
of which are concurrent lines in the image. First of all, as
Magee and Aggarwal [8], the vanishing points are detected
by accumulating the intersection points of a number of pair
of straight lines in the images, but using another type of
accumulation space. In order to reduce the search to a
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bounded close set, Barnard [3] proposed projecting the
lines of the image onto a Gaussian sphere and to use the
Hough transform paradigm to detect the vanishing points.
The projection of points onto a Gaussian sphere is
equivalent to a resampling of the image plane. The method
described here also resamples the space but keeps the
uncertainty of the intersection points roughly constant over
the space. This also leads to a bounded close set, but with
the same mapping along x and y axes. The local maxima are
then detected, each of them corresponding to a vanishing
point class (VP class).

At the same time, the parallel lines in the images are
detected. The line orientations are accumulated and the
local maxima are detected, each of them corresponding to
a parallel direction class (PD class). A line may belong to
one or more VP classes and to a PD class. These
classifications are used to evaluate the significance of a VP
class and to keep consistent alternative hypotheses in case
of failure. At this stage all the classes with their associated
lines and scores for belonging to that particular class, and a
score for each class are recorded.

Next, each class is hypothesised to be perpendicular to
another class, this hypothesis is either rejected or assigned
a score determined by a likelihood test. Then consistent
triplets of perpendicular directions (PPD triplets) are
searched for. Therefore the algorithm provides a
hierarchical sets of hypotheses from the low level (PD
classes) up to a high level (PPD triplets) (figure 4). At every
level, a score is associated with all the hypotheses, based on
a likelihood test result. Assuming an hypothesis is true, all
parameters are processed in a Kalman filter to increase the
accuracy, in a similar way to the automerging process [1].

In this paper, some approaches to the problem are
reviewed, the method is described and then the main
advantages and disadvantages are analysed. Finally results
on real scenes and a test card scene are described.

PREVIOUS WORK

The search of vanishing points consists of finding a small
neighbourhood in the space crossed by a sufficient number
of straight lines. The space is sampled and the number of
straight lines crossing each cell is computed, using the
Hough paradigm. Barnard [3] proposed projecting the
lines onto a Gaussian sphere centred on the optic centre.
The new search space is bounded. The search for the
accumulation points is achieved by sampling the sphere
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using spherical coordinates. Unfortunately the spherical
sampling is irregular and different in the x and y directions.
Quan and Mobhr [9] use the same method, classifying the
lines by looking for vanishing points. Once a vanishing point
is found with its associated lines, the lines are eliminated
and the algorithm is performed again. This approach
removes the possibility of having different hypotheses for
the same straight line, which is a  limitation for the
interpretation of the scene. Dickson [6] proposed a
triangular sampling of the Gaussian sphere which is very
attractive because it is isotropic. However the
computational efficiency has yet to be proved.

Magee and Aggarwal [8] only accumulate the projection of
the intersection points of any pair of straight lines in the
image, on a Gaussian sphere. It allows low_pass filtering
before accumulating, so eliminating many impossible
vanishing points (eg. a vanishing point cannot be on one of
the segments generating it). The accumulation is achieved
using the arc distance between two points.

Wei[11] proposes a calibration method based on vanishing
point detection. He proves that their detection allows all the
camera calibration parameters to be determined.

PARALLEL LINES GROUPING

The goal of this work is to built all the likely interpretations
of the directions of straight lines in a scene. These
hypotheses are hierarchically built, so that if the higher level
hypothesis is rejected at the matching stage, a lower level
hypothesis would be tested in a top down manner.

The difficulty of building such hypotheses comes from the
accumulation of uncertainty errors throughout the
acquisition and the processing of the data preventing, for
example, the vanishing point to be a single point. The
vanishing points are detected as the converging points of
several straight lines. Then it is hypothesised that a straight
line passing through a detected point P has its vanishing
point in P, Let P’ be the vanishing point of the straight line
D. First of all, the likelihood of the hypothesis: P=P
depends on the relationship between the distance from P to
D and the uncertainties of their locations. The errors of
interpretation will be of two types: (1) P’ is not P but is near
P (e.g. nearly parallel lines), (2) the point P is near the line
D by chance, P’ being far from P, and the line is not at all
parallel to the set of lines associated with P. The first case
leads to an underestimation of the uncertainty but the
second case may produce crucial interpretation mistakes.
Those considerations have lead to the adoption of the
following strategy. The vanishing point detection is based
on an uncertainty criterion to ensure the same probability
of detection over the space. Only intersection points will be
accumulated allowing a prefiltering of second type false
hypotheses. The classification stage will be based on a
maximum likelihood test taking into account the error risks
mentioned above.

Detection:

The uncertainty of the intersection point I of two straight
line segments depends on a number of parameters such as
the difference of the slopes and the distance from I to the
segments (lever effect: a small error on the end point
coordinates generates a big error on the intersection point
coordinates). As the segments are distributed only within
the image, if the vanishing point is far from the image, the
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lever effect is significant and the difference of the slopes is
small. Both of these effects increase the expected
uncertainty of such a vanishing point.

Let S and S’ be two segments intersecting at I. Using the
natural coordinates of the image (xy), the origin being the
centre of the image, it is possible to prove that (figure 1):

ox = K(a,Dm,Dm,V) ¥ €Y

and to bound K() for x large enough (13). Inside the image,
the approximation of an uniform distribution of straight
lines over the neighbourhood around the intersection point
hold and the expected value of the accuracy is roughly
constant.

Image boundary

a = tan(6)

Figure 1. Influence of intersection point location on uncer-
tainty

The intersection points of a great number of straight line
segments distributed on an image, and the associated
covariance matrices have been computed. The curve
o(X) =ox is filtered (mean filter). Then, for x large enough
it is approximated by a second order polynomial

+Bx+vy, using a least mean squares method. The
expected standard deviation gy of X', X’ being the resampled
abscissa of I, will be roughly constant if dx’/dx = 1/c for (| x|
< =Xxs)and dx’/dx = ll(axx+ﬁx+-y)for(|x| > = xs). This
accumulator space is now considered as an image (eg. using
a frame store). The number of points in a neighbourhood
centred on P with a size equal to 20x*20y is computed by a
convolution with weights equal to 1. Then the local maxima
are detected.

The accumulation is achieved only on the intersection
points which do not correspond to hypothesised parallel
straight line segments (see further on) and of which both
associated segments verified the relation: D/l <=
(k+1)/2(k-1), where D is the distance from the middle point
of the segment to the intersection point, 1 the length of the
segment and k the ratio of maximum distance to minimum
distance from the scene to the camera.

Two lines with the slopes a and a’ are hypothesised to be
parallel if (|a-a’|/o|a-’|) < V1. Most of those pairs have a
finite intersection point with no real significance. As both
classifications are performed at the same time, this
intersecting point is not accumulated. The direction
accumulation and local maxima detection is performed in a
similar process to the VP class detection.



Classification:

In the following we assume that the noise follows a Laplace
Gauss law with a null expected value. The objective of
classification is to find sets of 3D parallel lines but those
lines are mixed with lines of any direction interacting with
them. P is assumed to correspond to a real vanishing point.
Two hypotheses are considered, H1: the line has its
vanishing point near P and belongs to the correspondent set
of parallel lines, H2: the line passes near P by chance. Let
rl and r2 be two types of risk. The first type is the risk of
considering H2 true when H1 is true and the second type is
considering H1 true when H2 is true. It is possible to favour
either one or the other approach according to the
consequences of the decision.

The classification of the lines is achieved by a maximum
likelihood test formulated for a decision variable V:
distance from the straight line D to the point P for the VP
classes and the difference of the slopes for the PD classes.
The distribution of the decision variable V associated with
a particular class VP or PD is analysed in the
neighbourhood C centred on 0 with length L (figure 2). If
H1is true, Vis assumed to obey a Laplace Gauss law. If H2
is true, V is assumed to obey a uniform law inside C. The
probability density model used is:

P(V) = (P(H1|C)exp(-V*/20:2) {Zmov

+P(H2|C)/L)P(C) (2
P(H|C)
{+5
v
& L/2
Figure 2. Probability density decomposition
The maximum likelihood test is:

T = P(H1 | C)Lexp(-V*/20v2)/P(H2 | CV Zov 3)

P(H1|C)/P(H2|C) depends on the correctness of the initial
hypothesisi.e. the explored scene mainly consists of parallel
lines. Weiss [12] proposed a method for maximising the
likelihood function in a slightly different situation, allowing
the determination of the parameters of the uniform density.
The vanishing point location is roughly known, the
maximum likelihood test is just ensured to be higher than
1. A large enough rl is chosen, which decreases r2. A
reference case is defined such that the probability density
is associated with the uncertainty value computed in the
detection stage. T can be evaluated in the following way. For
a PD class line:

kiexp(-(a-a")%/20% |a)) (1 +2) /o |aer| @)
For a VP class line:
k2exp(-D%20p)(1 +a%) Y fon/a(dx7dx)” + (dy/dy)*
(&)
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where k1 and k2 are such that T > = 1in the reference case.

Twoiterations are performed, the first iteration uses the VP
coordinates (PD slope) and the covariance matrix obtained
in the detection stage to get a better approximation of these
coordinates (slope). The second iteration classifies the lines
such that T > = 1 and provides the final estimation of the
parameters of the class (VP coordinates or VP slope and
covariance matrix), using a Kalman filter (figure 3).

The score of a line associated with a classis sc = T/(1+T),
which is slightly different to P(H | V), as P(H1 | C)/P(H2|C)
remains unknown.

Detection
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T=1

c;.c R c i‘C IC P
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Figure 3. General system structure

Significance of the classes:

A local maximum may occur when two sets of very close
parallel lines intersect (eg. sets of close pipes). This local
maximum has no significance as it represents the
intersection of only two directions. When two lines of the
same VP class belong to the same parallel class they are
considered as elements of one direction. A vanishing class
is now a set of directions, assumed to be independent. Two
hypotheses are considered: (H’) the point P does not
correspond to any main vanishing point and the distribution
around P is locally uniform, (H) the point P corresponds to
a main vanishing point and the probability density is as
described above. The score of a class is P(H|V1,...,Vn), Vi
being the decision variable associated with a line i classified
in the VP class. Using Bayes theorem, in its odds form:

O(H|V1,...,Vn) = L1...LnO(H) where:
Li=P(Vi|H)/P(Vi|H’). The score is equal to:
sc=1-P(H’)/(P(H’) + P(H)(P(H1|H)IILi

+P(H2|H))) (6)

where Li= P(Vi|H1)/P(Vi|H2)= 2Ti}Zwes, € is the
exponential constant and s the surface of the gaussian on the
neighbourhood considered. P(H) is the a priori probability
to have detected a real vanishing class, which is estimated as
a function of the value of the corresponding VP in the
accumulator and the total number of intersection points or
it may be simply set to 0.5. P(H1|H) is the a priori
probability for a line to be correctly classified near a
vanishing point (P(H1{H) = P(H1|C)). If nbd is the number
of directions involved in a VP class, P(H1|H) is
approximated by (nbd-2)/nbd. The score sc is null for a VP



class formed by 2 directions, very small when one of three
directions is associated with a very small score, and
increases rapidly with the number of reliable directions,
which corresponds to the intuitive idea of the significance
of a class [13].

In the same way, a parallel class may represent a direction
parallel to the image plane if it consists of a number of
parallel lines not too close to each other (eg. a semi
continuous line has no significance by itself). If two parallel
lines are such that they could be associated with the same
VP class, then they are considered as elements of one
subclass. A PD class is a set of subclasses of which the scores
are the supremum of the scores of the elements, The PD
class score is obtained as above but P(H1|H) is
approximated by (nbd-1)/nbd and P(H) depends on the
ratio of the number of lines in the PD class to the total
number of lines.

Assuming our image interpretation is correct, a better
representation of the lines is computed, using the vanishing
point coordinates, and information such as semi-continuity
of a number of straight line segments, in a Kalman filter
process, in a similar way to the auto-merging process [1].

PERPENDICULAR LINE GROUPING

Let f be the focal length, two vanishing points F1 and F2
correspond to perpendicular directions if

OFLOR2=-f Q)

Therefore a triplet of perpendicular directions can be
represented, on the image, by a triangle of which the
vertices are the vanishing points Fi associated with each
direction. The orthocentre of the triangle should be the
projection of the optic centre and the scalar products
OFi.OF;j be equal to -f2. The purpose of this work is to find
in the image such consistent configurations.

Two VP classes are hypothesised to be perpendicular if the
likelihood test associated with the decision variable:
V=0FLOF2+f succeeds. The score is the test value
scaled between 0 and 1. If one of the class is a PD class then
V is the scalar of OF with the direction of the class.

A triplet of classes is hypothesised to be a PPD triplet if the
three 3D directions are perpendicular to one another. Its
score is computed in a similar way to the class score. H
corresponds to the hypothesis PPD is a triplet of
perpendicular lines in the 3D space and H’ is not H.

sc=(1-P(H’)/(P(H’) + P(H)IILi)IIsci = scOIlsci  (8)

where Li=P(Vi|H)/P(Vi|H’) and sci is the class score. In
absence of any a priori knowledge of H, P(H) =0.5.

Even if the calibration parameters are only approximatly
known, such hypotheses are possible by taking into account
the uncertaincy of these parameters. Few hypotheses are
available and the tests described above provide a good filter
even with imprecise parameters. In this case, P(H) may be
increased in order to favour the class score rather than sc0.
The calibration parameters may be estimated on testcards
with the same method [11].

The result of the algorithm is a tree (figure 4). At the top of
the tree are the PPD triplets (usually one or zero) formed
by pairs of perpendicular directions, themselves
represented by sets of 3D parallel lines grouped in main
directions (close lines grouped together). At the bottom are
the straight line segments detected in the image. Horizontal

260

links exist as a straight line segment may belong to different
classes. Each node has a score value.

3-d interpretation Tree representation
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Figure 4. Hierarchical tree description of straight lines in a
scene.

ANALYSIS OF THE METHOD:

The advantage of that method is that it provides a full and
flexible interpretation of the image in term of 3D straight
line orientation. Both parallel and vanishing classification
provides complementary information. The VP and PD class
detection stage is based on a statistical study of the
uncertainty. This allows a nearly constant quality for the VP
detection, and the determination of the reference
parameters which are useful in the classification stage. This
last stage is based on an uncertainty criterion different to a
neighbourhood criterion (eg: a line close to P may be
discarded while a further line may be accepted). Another
important advantage of this method is the absence of
parameter choice apart from the risks r1 and r2 which
reflects both the wish for a complete interpretation and the
validity of the initial hypothesis, ie. presence of a number of
parallel lines in the images. The other parameters are
physical e.g. the calibration parameters and the initial
covariance of the end points which are assumed to be
known.

The probabilist model uses a locally uniform probability
density to represent H2. A wrong interpretation of a class
will probably be produced by another regular structure
present in the scene which is badly represented by the
uniform density. In this case more a priori knowledge would
be necessary to improve the model. The model used is not
reliable enough to provide a value of P(H1|C)/P(H2|C),
and therefore it does not provide the exact probability
values. Further work is required to improve the model and
the estimation of the density P(V |H2).

Only the intersection points of the m longest segments with
all the n segments are accumulated, so the detection stage
complexity is O(mn). The classification stage complexity is
O(pn), p equal to the number of classes.



RESULTS:

Preprocessing is performed leading to a polygonal
approximation of the edges. The edges are detected by the
Canny operator [5], followed by a polygonal approximation
algorithm developed at INRIA Sophia Antopolis [4]. The
chosen line representation in the image is: y = ax+b if
a< =1landx=ay+bifa> 1. The resampling parameters of
the accumulator space are: Xs==80, c=55.3, a=250.0002,
a=2580.1 and y=-84, depends on the covariance matrix V
and the required resolution (the same parameters are used
for y). The accumulator space is an image 256+256, and V is
such that vx=1, vxy=0 and vy=1 which leads to an
expected uncertainty 1/8 equal to 3.5. If an image point P
has more than 6 intersection points in a neighbourhood with
a radius 3.5 centred on P (intersection of 4 lines), P is
hypothesised to be a vanishing point. The values v1 and v2
are chosen to be 1.8 and 1.3 corresponding to the first type
risk values 7% and 20%.

We have processed different images of an indoor scene of
a nuclear plant and also an image of a testcard. A number
of difficulties exist in these images. The first one is the non
exact parallelism of the 3D lines (e.g. in the nuclear plant
image the boundaries of the door not completly open),
which produces two close local maxima in the accumulator
space. The horizontal lines in the image of the test card pass
through both vanishing points. Possible classification of one
line into several classes allows that problem to be solved.
Horizontal links between the same element of different
classes will help a further interpretation to solve the
ambiguity. The second difficulty is the presence of a line
(e.g. leg of a tripod in the nuclear plant image), near a
vanishing point P by chance. The uncertainty of the distance
from this line to the point P is very small because of the
proximity of the segment ends and the point P. Then D/oD
is larger than v2 and the line is rejected. The line will not be
rejected if a neighbourhood criterion is used instead.

On all images, the classified lines were correctly classified.
All main directions were found and perpendicular
directions were correctly hypothesised. The scores of the
classes gives a good idea of their relative significance.

Figure 5 shows the result of the interpretation as a
hierarchical tree.

number of VP classes: 18
number of PD classes: 6
perp. triplets and scores: 10 19 23 0.69
919230.46
131923041
class number: 10
x, y and cov matrix: 235.66 112.71 3.71 1.78 -0.09
number of lines: 10
number of directions: 6
score: 0.96
perp classes and associated scores:  190.83
200.75
230.55
240.72
straight line segment number: 10 1
xa,ya,xb,yb: 15 103 117 107
map, a, b and cov: 0 0.039 102.41 0.0002 1.34 -0.01
score value: 0.83
alt. PD class: 23
alt, VP class: 89

Figure 5. Extraction of interpretation tree result.
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CONCLUSION:

A method for interpretating lines in an image as parallel
lines and perpendicular lines in the 3D world has been
described. The method is based on a probabilistic
approach, allowing a multiple classification for each line.
Animportant point is the fact that the choice of parameters
is limited to the risks of first and second type, which are
easily controlled. The method leads to a hierarchical
interpretation tree, from triplets of perpendicular
directions to parallel lines.

From the detected directions and the location of each
segment in the image, a sketch of the 3-dimensional
configuration will be hypothesised which will be used to
initialise the matching with the model.
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Figure 6. Image of a nuclear plant showing the detected straight lines and the highest scoring PPD
with the lines in the three directions indicated by a,b,c (this is the same image as for figure 5).

Figure 7. A different image of a nuclear plant. again showing best PPD triplet.
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Figure 8. Image of a test card again showing resuit of detection of best scoring PPD triplet.
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