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We propose here a nev method for retrieving
an image from noisy, incomplete data. It is
based on an idea incorporating the principle
of maximum entropy, a veil known powerful
method for image processing. An image is
built on the computer by allocating grains
to pixels one at a time on the basis of
certain deterministic rules as to where each
successive grain is placed in image space.
The performance of the method is tested in
an application in astronomy and for
two-dimensional model images.

We propose here a simple and effective
method for reconstructing an image from
noisy, incomplete data. The essence of the
method is to allocate trial grains one at a
time to an image space in which an image is
constructed by a set of deterministic rules
for the placement of each successive grain.
It is therefore called the grain allocation
method (GRAUI). Frieden [1] was the first to
use this idea in processing strongly blurred
alphanumeric characters.

In this paper, the idea is further developed
and combined with the principle of maximum
entropy [2], which makes it possible to
construct, in the class of all feasible
images (i.e., those compatible with the
given data), the one which is most unbiased.
Reconstructions with greater entropy
represent more disorder, and are more
probable and more natural according to
Shannon's interpretation of entropy [3] as a
measure of information.

GRAIN ALLOCATION METHOD (GRALM)

(j=l,...,N). Grains are then allocated one
at a time to initially empty pixels on the
basis of certain decision rules. Since the
image reconstruction problem is ill-posed
(i.e., small perturbations in the data may
give large errors in the reconstruction),
such problems generally require some kind of
regularization in order to generate
physically plausible reconstructions.
Practical methods of regularization are
based on building smoothness into the
reconstruction. This can be done in a
variety of ways, but the one which is more
effective is the maximum entropy approach
[4] that results in the most featureless
model consistent with the data.

Different versions of the maximum entropy
approach have been used by different
authors, but the numerical problem [5] is in
general one of a constrained optimization.
Our formulation is to maximize the
functional S, called the entropy, defined as

N

(2)

3=1

where P.

the form

f ./£f, subject to a constraint of

which expresses the requirement of
statistical consistency with the actual
data. The statistic Q(f) is usually chosen
as the chi-sguared value [6], defined in the
form

Let the required image have pixel values
represented by positive numbers
f,,f,,...,fu, which are to be determined,

and the observed data be given by

di v
where the n^ represent random noise and

set IRJJ) is the point-spread function.

(1)

the

Let us assume that each f. consists of a

number of grains, each of intensity Af, and
the image space in which the f. are defined

is formed by dividing it; into N pixels

(4)

where c\ is the standard deviation of the

noise in the data, with the constraint Q(f)
* M. Our maximum entropy procedure requires
an initial feasible reconstruction, i.e.,
one which satisfies this consistency
requirement. For this purpose, ar.
optimization problem whose cost function is
related to how well the constraint (3) is
satisfied is modelled, the cost function
being given by

M

(5)
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The form the
,.thplacing the k grain in the

are thus given by-

cumulative image after

pixel J, and

(6)

j is a normalization parameter, defined as
1 ' — (£f)/k. To place each grain, we seek
tne pixel which gives tne largest reduction
in Q(f); we find the pixel number J which
gives the minimum

l,f
k-1 Af,..,: (7)

Then the corresponding
will be

,k ,k-l .c
fj - fj - A f -

reconstructed image

(8)

As the f. are incremented grain by grain,

the algorithm at some stage may be trapped
in a local minimum because of the definition
of a grain as a finite increment. It may
then be impossible for a single grain to
produce the jump needed to reduce the cost
function Qj.(f) • So an algorithm that allows

Q, (f) to increase at some stage in order to
escape the local minimum is used. Grains are
allocated to pixels until a feasible
reconstruction which satisfies the
consistency condition is obtained. However,
many feasible solutions can be found, and
the maximum entropy criterion is used to
select a particular one. We continue adding
grains one at a time to pixels in such a way
that the pixel which gives the cumulative
image with the greatest entropy is chosen
at each stage from among those that satisfy
the consistency condition. In other words, a
grain is added to the pixel which satisfies
the consistency condition and gives largest
entropy,

[s(fl '
N

,...,fN jj. (9)

This iterative procedure is stopped when

V If — T
I s < - ' - 1 L ' I

! s(fS I '
where c is preassigned numcer.

(10)

one-dimensional; the mask is smaller than
the detector in one dimension, and both the
detector and the mask pattern are wrapped
around the circumference of a cylinder.

The data are observed as a function of
position along the detector of each sector
and show a characteristic shadow of the mask
pattern, as illustrated in figures 1-5. The

Figure 1. Data observed
instrument.

by the FOURPI

horizontal axis measures the distance along
the detector, expressed as an equivalent
angle in degrees. The vertical axis measures
the intensity in arbitrary units (in the
actual calculations, measured as the number
of counts). The noise in the data was
generated using a Poisson distribution.

In figure 1, the sector illustrates views of
the region of GX17+2, modelled with
intensity of 950 Uhuru flux units (ufu). The

COMPUTER SIMULATIONS
Figure 1.1 Reconstructed image obtained

by the direct matrix inversion
method.

We tested the method described in the
previous section for one-dimensional
astronomical images and two-dimensional
model images. The results are given in this
section.

The astronomical data, provided by the
School of Physics and Space Research at the
University of Birmingham, are a software
simulation of the response of the FOURPI
instrument, an x-ray all-sky monitor
proposed as a possible instrument for the
spectrum-X mission (G. K. Skinner, private
communication). This consists of four
modules, each containing 30 sectors. Each
module can be thought of as a number of
conventional coded mask telescopes in each
of which the mask pattern is

data.were obtained from a simulation of a
8x10 s observation. In figure 1.1, the
reconstructed image obtained by direct
matrix inversion of (1) exhibits large
oscillations, and the x-ray source is almost
unnoticeable. in figure 1.2, the
reconstructed image obtained by the GRALM
reveals clearly the x-ray source GX17+2 in
the right position with almost the correct
intensity. In figures 2-5 the
data were obtained from a simulation of a
10 s observation. The images retrieved from
those data are given in figures 2.1, 3.1,
4.1 and 5.1. Parameters characterizing the
computer simulations of the GRALM for the
five cases which correspond to figures 1-5
are given in table 1. Here K is the number
of the final iteration in the maximum

240



-40 -to « w 40

1

Figure 1.2 Reconstructed image obtained
by the GRALM.

Figure 2.1 Reconstructed image obtained
by the GRALM.
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Table 1. Comparer simulations of the GRALM

entropy procedure, CPU1 is the Multics CPU
time (min) for the feasible solution, CPU2

is the total Multics CPU time (min) for the
complete reconstruction, Ql is the
chi-sguared value for this feasible
solution, Q2 is the chi-squared value for
the maximum entropy solution, and STN is the
signal-to-noise ratio, defined as STN -
max{di)/o-, i=l, — ,M.

overall, the results indicate very good
perfomance in the reconstruction of blurred,
noisy images. However, the perfomance in the
reconstruction of extremely noisy images

Figure 2. Simulation of data obtained by
the FOURPI.

seems to be a little poorer. In figures 1.2
and 5.1, the signal-to-noise ratio (STN) is
high. Therefore, the maxima of the
reconstructed sources in table 1 [Max(f*)]
are found with almost the sane intensity as
the maxima of the original sources taken
from the x-ray catalogue [Max(f)]. However,
with decreasing STN in table 1, a decrease

Figure 3. Simulation of data obtained by
the FOURPI.
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Figure 3.1 Reconstructed image obtained
by the GRALM.

in the high-intensity regions is observed.
This arises from fitting the variance of the
noise to the expected value. In this
connection, spurious oscillations due to the
noiss in the data can be seer in figures
2.1, 3.1 and 4.1. As can be seen in figures
1.1-4.1, the reconstructions contain a
uniform background intensity because the
maximum entropy criterion favours a uniforr.
distribution. This backgound intensity level
varies with the standard deviation of tne
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Figure 4. Simulation of data obtained by
the FOURPI.

LI

Figure 4.1 Reconstructed image obtained
by the GRALM.

Figure 5. Simulation of data obtained Cy
the FOURPI.

Figure 5.1 Reconstructed image obtained
by the GRALM.

Figure 6. Original image.

Figure 7. Original image.

Figure 6.1 Noisy, degraded image.

noise in the data. Consequently, the weak
sources whose intensities are less than tne
standard deviation of tne noise are removed.
In table 1, it can be seen that the CPU time
taken for each simulation depends on the
background noise level in the data, and most
of the time is spent in stabilizing the
solution in the maximum entropy procedure.

The one-dimensional problem discussed above
is extended to two-dimensional problems by
generating the two-dimensional model images
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Figure 6.2 Reconstructed image obtained
by the GRALM.

shown in figures 6 and 7 with sizes of 30x30
and 32x32. The model images are degraded by
a simple point-spread function which
averages the intensities over neighbouring
pixels (a 3x3 box filter). The noisy data
shown in figures 6.1 and 7.1 are obtained by
adding random noise to the degraded image.
The random noise was generated from the
zero-mean Gaussian normal distribution with
standard deviation of unity. Figures 6.2 and
7.2 show corresponding reconstructions

Figure 7.1 Noisy, degraded image.

obtained by the use of the GRAI21. In figure
6.1, the letters R an N are not
recognizable, but in figure 6.2 they are
clearly recovered. Boundaries of the letters
are clearly detected. In figure 7, a
three-dimensional representation of an image
which consists of randomly placed point
sources is shown. Although the two point
sources in figure 7 are degraded to the one
point source shown in.figure 7.1, they are
recovered in figure 7.2 in the right
positions with an error of a few percent in
the intensity.

CONC LUSION

We have described a new method for
retrieving images from noisy, incomplete
data which incorporates the principle of
maximum entropy. The results presented here
indicate that the method is a valuable
prospective tool for images of impulse and
edge types, and gives greatly improved
resolution, free from ringing. As expected,
the quality of the reconstruction is better
for lower noise levels.

We note that much of the computation is very
suitable for implementation on parallel
computers. A parallel implementation of the
algorithm will therefore be considered. An
extension of the one-dimensional
astronomical imaging problem introduced here
to two-dimensional cases in which the mask
has the same size as the detector will be
considered in a future study.
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