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The lack of contextual integrity in region labelling
schemes for segmented visual images has been a long
standing problem in computer vision. In the past it has
been common to adopt some form of relaxation scheme,
such as relaxation labelling, to remove both labelling am-
biguities and labellings which, usually, are obviously con-
textually incorrect. So far no general region labelling sys-
tem has been found.

A neural network has now been applied to the above prob-
lem. A simple multi-layer perceptron, trained on the
relative positions of, and the unary features pertaining
to, a set of regions obtained from image segmentations
has been shown to be capable of finding roads in natural
scenes.

The correct labelling of segmented images has been a
difficult and generally unsolved problem in computer vi-
sion for many years (see [1,2]). Most labelling systems
at the moment rely upon obtaining a tentative initial set
of labels for the regions in a segmented image and then
applying contextual knowledge to try and resolve the la-
belling ambiguities that inevitably occur. The tentative
labelling schemes, such as Euclidean distance or K near-
est neighbour clustering for example [3,4], usually act by
comparing a measure of the unary features of a region
(features internal only to the region) against the fea-
tures of typical region types derived from a training set.
The results from this method are quite often ambiguous:
a region may have several possible labels. To try and
rectify these ambiguities the contextual significance of
a region's label with respect to the labels of the neigh-
bouring regions is used. Schemes such as relaxation, or
probabilistic relaxation labelling [5,6], use such contex-
tual knowledge. Although these schemes work well with
edge data in real images [7] and region segmentations of
artificial images [2] they are found to be less robust with
region segmentations of real imagery. This is because it
proves exceptionally difficult to produce a complete and
general set of rules to describe the contextual relation-
ships between labelled regions for a real image [8].

Learning mechanisms such as those put forward by
Michalski et al [9] and Quinlan [10] could be used to
generate a suitable set of contextual rules directly from
examples of region data. However, apart from a few ex-
ceptions, such as those given in references [11,12], very
little work has been carried out in computer vision using
these methods.
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An alternative method may be to use a neural network.
The neural method proposed by Hopfield and Tank [13]
has been used to optimise the tentative labellings of the
regions present in an image [14]. However, the method
only considers artificial images, and does not find the
contextual rules relating regions in the image itself. The
method, therefore, has the same drawbacks as the relax-
ation methods mentioned above. Other neural network
methods which are capable of being trained could be
more useful. Such a network is the multi-layered per-
ceptron [15]. This has been shown to be robust against
uncertain data [16] and able to extract the contextual
relationships from real training data [17]. In fact recent
work, related to the work presented here [18], has shown
that a multi-layered perceptron is capable of forming a
set of contextual relationships between the labelled re-
gions in a segmented image by training it on correctly
labeled images. Further, Sejnowski's and Rosenberg's
[17] work shows that a network does not necessarily re-
quire a tentative labelling of the features present in the
input data to be able to form contextual relationships.
Unlike the conventional labelling methods, therefore, it
should be possible to design a neural network implemen-
tation which only uses contextual and statistical features
that are obtained directly from an image, and does not
require any initial region labelling at all. This article
describes the preliminary results of a study into the pos-
sibility of using such a neural network to label the regions
obtained from real images of natural outdoor scenes, by
first training it on such scenes.

Network

The type of network used in this implementation is
known as the multi-layered perceptron [15]. To try and
keep this article as brief as possible it has been assumed
that the reader has a limited knowledge of the principles
behind these ideas. However, for completeness, a limited
description of this type of network is given here.

The multi-layered perceptron (MLP), as the name sug-
gests, consists of layers of simple non-linear processing
units. These units are highly connected and "threshold",
usually with a sigma function, the sum of the unit's in-
puts to give an output. Each unit in a layer is connected
to the units in layers adjacent to that layer via a weighted
link (see figures 1 and 2).

The network feeds-forwards signals from its previous
layer, via the non-linear function, to the next layer. The
weights on the links together with the non-linear func-
tion on the unit allow non-linear relationships to be en-
coded between the network's layers and therefore be-
tween its input and output.
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Figure 1: Typical neural element with a sigma function
threshold
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Figure 2: Schematic diagram of a three layered MLP

A set of weights for a given problem may be learnt by
training the network, on known examples, with an algo-
rithm known as error-back propagation [15]. Error-back
propagation is a gradient descent algorithm. The algo-
rithm allows the weights on the network to be altered in
proportion to an error generated by taking the Euclidean
distance of the network's actual output, for a given in-
put, from what is considered to be the true output of
the network for that input. How the network is tailored
to the particular labelling problem discussed here is is
explained in the next section. A more complete descrip-
tion of the ideas behind neural networks may be found
in Rumelhart and McClelland [19].

Implementation

To ease the amount of computation during this initial
study the network was only required to look for one type
of region ie. roads. Although this is a simplification the
implementation is still relevant for other types of region
such as fields or vehicles for instance. The implementa-
tion, therefore, differs from that of Pomerleau [20] which
is tailored solely for the detection of roads.

A three layer multi-layer perceptron [15] was designed,
as described below, to act on a region segmentation of an
image and output a description (a label) of the regions in
the image. The aim was to label every region (correctly)
as road or not-road. A typical example of an image and
its associated region segmentation is given in figures 3
and 4. The segmentation was obtained by processing
the image with a region based segmentation algorithm,
coalesce, designed at British Aerospace [21]. However,
in principle any other reasonably efficient segmentation
algorithm could have been used.

The region features in the segmented image were pre-
sented to the network on a region by region basis. The

Figure 3: Test image

network was configured to allow this to happen as fol-
lows:

layer 1: 89 Input units. 80 of these units coded the po-
sition and statistical features, as described below,
of up to 8 regions adjacent to the region to be clas-
sified (the central region). The features from the
8 adjacent regions allowed contextual information
about the central region to be presented in a local
manner. The remaining 9 units coded the central
region's unary features, also described below.

layer 2: 16 Hidden units (8 and 4 Hidden units where
also tried for this implementation). Although the
network converged with the smaller configurations
the weight set obtained was not as good as that
found with the 16 hidden unit configuration. With
a much larger number of hidden units (eg. 30) the
network did not converge.
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5. compactness of the region,

6
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Figure 4: Segmentation of the test image

Angle
338-22
23-67
68-112
113-157
158-202
203-247
248-292
293-337

Code
1 0 0 0
1 1 0 0
0 100
0 110
00 10
00 11
0 0 0 1
1 0 0 1

Table 1: Gray coding for angles between region centroids

layer 3: 2 Output units. This allowed the coding of
road [1,0] and not-road [0,1] for the central region
label.

The position of each adjacent region relative to the cen-
tral region-was found by taking the angle measured clock-
wise from the positive Y-axis to the line joining the cen-
troids of both regions. Each angle was given to the net-
work as one of eight Gray codes, taking up four elements
of the input for each region, see table 1. Gray codes were
used because the code is cyclic and therefore has no dis-
continuity at 360 degrees. The Gray code angle [0,0,0,0]
for the central region was also given for completeness.
The remaining six input elements for each adjacent re-
gion coded the features:

1. mean grey level: this value was normalised by di-
viding the value by the maximum grey level value
of 255,

2. standard deviation of the grey levels inside the re-
gion: this value was normalised in the same way as
for 1,

3. homogeneity of the grey levels (see [22]),
4. relative area of the region: this is the ratio of the

region area with respect to the area of the whole
image, in pixels,

[pertmeter of region)3 '
adjacent-perimeter length: this is the ratio of the
perimeter common to the adjacent region and the
central region with respect to the perimeter of the
central region. This value was not given for the cen-
tral region.

As is pointed out some of the above values were nor-
malised. This ensured that all the values presented to
the network were bounded on the unit interval and, thus,
no artificial bias was introduced into the initial stages of
training as this would slow the network's convergence to
its final configuration.

All the above features and angles were presented to the
network as an 89 element long string. The first 9 el-
ements of the string held five central region statistics,
in the order given above, together with its angle code.
The next 80 units, divided into 8 x 10 blocks, contained
the statistics and angle codes for the 8 adjacent regions.
When more than 8 adjacent regions were present the
8 with the largest adjacent-perimeter were taken. For
regions with less than 8 neighbours null codings (ze-
ros) were given for the unoccupied inputs. The ordering
of the adjacent-region statistics in the input was deter-
mined by the adjacent-perimeter length. The features
for the region with the largest adjacent-perimeter were
placed closest to the central region's features and so on.

The choice of only using up to 8 regions is, to a certain
extent, an arbitrary one. A region can have anything
from between 1 to ~ 100 adjacent regions. However,
one finds that the regions polarise between those that
are highly connected (on average ~ 40 adjacent regions),
and those that have a low connectivity (on average ~ 4).
If the input were extended to allow for a large number of
adjacent regions the training of the network would be-
come too computationally expensive. 8 adjacent regions
were taken as a compromise since it allows all the ad-
jacent regions to be taken into account for the regions
with a low connectivity, and allows the network to re-
alise that the region possibly has a high connectivity (ie.
when more than 7 adjacent regions are present).

The way that the adjacent region information has been
selected and presented to the network obviously encodes
a certain degree of prior information about the type of re-
gion that the network is trying to label. This is also true
about the selection of the other region features used in
this particular example. This type of information may be
termed extrinsic; that is the information given to the net-
work by the operators choice of feature rather than the
information present in that data which may be termed
intrinsic. Extrinsic information maybe likened to what is
termed "background information" in the field of artificial
intelligence. The amount of extrinsic information given
to the network is important since too large an amount
can over constrain the network. Under these circum-
stances the operator restricts the problem for which the
network was designed, reducing the ability of the net-
work to generalise. It is also found, in these situations,
that the more simple statistical clustering algorithms,
such as K nearest neighbour, can be used on the data
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True
Label
Road

Not-Road

Assigned Label
Road

66.70
17.30

Not-Road
33.30

88.70

Freq
48
52

True
Label
Road

Not-Road

Assigned Label
Road

82.60
33.00

Not-Road
17.40

67.00

Freq
23
97

Table 2: Best guess estimates (%) for road detection
network on the test data

Table 3: Best guess estimates (%) for road detection
network for the test image

instead of the type of adaptive network discussed here
[23]. This problem in relation to this network is discussed
further in section .

The network was trained on the features described above
using error-back-propagation [15]. The training data was
obtained from the segmentations of 36 images of differing
outdoor scenes obtained from the Alvey data base pro-
duced for the MMI 007 project. To allow the training to
take place the true identities of the regions contained in
these segmented images were obtained by hand labelling
the segmentations prior to training. This gave ~ 250
examples of road regions. In addition ~ 250 not-road
regions, evenly sampled from the most frequent types of
region present in the segmented images, were also taken
as counter examples. The order that the regions were
presented to the network was randomised to prevent any
bias being introduced into the training. The weights on
the network's links were updated after each presenta-
tion of a region and its associated neighbours' features.
This continued until the total error over the training set,
generated by the network, converged, ie became stable.
Typically for this network, to produce a small error, this
took 2,000 iterations (one iteration being the applica-
tion and weight update of all the vectors in the training
data).

Results

Once an adequate convergence on the training data was
obtained, the network's weight configuration was tested
on:

Test data: Region data which had been used to form
the road/not-road data but had been removed and
therefore not used to train the network.

A test image: A complete image which had not been
used to form the road/'not-road data (see figure 3).
This image, therefore, was not used to train the net-
work.

The performance of the network was determined by com-
paring the output of the network against the true output
or label. These results are shown in table 2 for the test
data, and table 3 for the test image. The assigned label
was found by taking the label with the closest Euclidean
distance to the networks output.

The action of the network on the test image reflects its
performance on the test data (see tables 2 and 3).
Close inspection of these results suggests that this imple-
mentation is able to use contextual information; figure 5

Figure 5: Segmentation of the test image with the re-
gions labelled by the neural network as road displayed in
black.

demonstrates this. The white lines in the road, and the
gravel sides of the road, as desired, are labelled as road
just as is the main piece of tarmac. Although some of
the regions are labelled incorrectly there is some sugges-
tion that the network is stable against uncertain data as
it was able to cope with the poor segmentation between
the vehicle and the road.

The weights generated by the learning mechanism can,
in some cases, be interpreted as rules which describe how
the network differentiated between road and not-road re-
gions. The number of rules that have been determined
is very limited at the moment but they mainly mirror
those rules that experienced workers in the area regard
as important. However, in some cases, the network ap-
pears to have highlighted new relationships which were
not originally thought to be significant. For example,
compactness is shown to be an important signature when
looking for roads, whereas the central region's mean grey
level does not appear to be significant. Further exam-
ination of the weights suggests that the network only
considers the first 5 adjacent neighbours to be impor-
tant. All the weights corresponding to the inputs for the
3 adjacent neighbours with the smaller adjacent perime-
ter were almost zero. Since 8 neighbours were consid-
ered this suggests that the restriction of only taking a
maximum of 8 neighbours has not over constrained the
training of the network. This is also supported by the
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Figure 6: K nearest neighbour labeling (K= 6).

fact that the performance of this network is markedly
better than the best performance of a K nearest neigh-
bour clustering scheme on the same data, the results of
which are given in figure 6.

Further inspection of the weights also suggests that the
network has formed contextual relationships between the
data; rules such as:

A central region that has a small homoge-
neous region with a small adjacent perimeter
to the left of it, and has a region to the right
which is not homogeneous, is road like.

are evident in the weights. This rule may be interpreted
as finding the edge of the road. The ability of the net-
work to generate contextual rules is encouraging and im-
plies that such networks could be used to generate rules
for more conventional systems. However, these results
are tentative and still require further work.

Lastly, these results suggest that a more compact net-
work implementation may be possible with an input re-
duced to only those features that the weights suggest
have a significant influence, and a reduced number of
hidden units. Analysis of the weights suggests that 3 of
the hidden units are superfluous; all the weight values to
and from these units are practically zero.

Conclusion

The results presented in this article are limited and by
no means conclusive. Nevertheless, they do indicate that
neural networks may provide a useful tool for analysis in
computer vision. Furthermore if these results can be
shown to be more general then they suggest that these
systems may provide an alternative and useful region
classification system. However, much work still remains
to be done before a definite answer can be given as to the
extent to which neural network implementations may be
said to "solve" the image labelling problem.

The author would like to thank: A. Page, for his invalu-
able help in carrying out the image segmentations that
were essential for this work; A. Murton for the routines
used to display the results; the members of the Research
Initiative in Pattern Recognition for their helpful com-
ments on this work, and finally P. Greenway, for reading
the manuscript.
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