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Abstract

Hildreth described a method of extracting the normal
component of optic flow along a moving closed contour.
She also described an algorithm - based on gradient de-
scent - of recovering the smoothest full flow field consis-
tent with the normal flow. Her iterative method is some-
what slow. It also leaves open the question of what, if
anything, we are going to say about the full flow field
after we have obtained it.

In this paper I describe a method of obtaining the
smoothest flow field by expanding it in terms of Fourier
components - the natural basis functions for a cycli-
cal function. These have a number of nice properties
that greatly assist us. Notably, the amplitude of any
given frequency relates in a direct and simple manner to
"smoothness" - a fact that enables us to "regularise" our
procedure simply and economically.

1 Introduction

Function fitting involves "explaining" a dependent vari-
able (which may be a vector) as the weighted sum of a
set of functions defined over one or more independent
variables. There are two canonical cases. Where the ob-
servations are dense - or have some distribution known
in advance - a set of orthogonal functions may be derived
in advance and each one fitted independently to any set
of observations. Where the distribution of observations
is not known in advance any set of explanatory functions
will, in general, be found to co-vary. In this case a least
squares regression is indicated.

Fourier functions are the prime exemplar of a set of
orthogonal functions. If I define a scalar quantity F over
the range 0 < x < 2TT I may obtain its Fourier expansion
- in terms of sines and cosines let us say - by taking

(1)

(where E = cos(wx) or sin(wx)) for u = 0, 1, 2, 3
etc. The Fast Fourier Transform incorporates a felicitous
trick to perform this operation extremely fast (and in a
manner ideally suited to parallel computation).

Suppose, however, that I do not know F for every value
of x - there are missing observations. The Fourier trans-

form is now undefined. There is an infinite number of
Fourier transforms perfectly consistent with the data to
hand - they correspond to the infinite number of "halluci-
nations" I can have concerning the missing observations.

In this situation it is necessary to invoke some sim-
plicity, "energy" or smoothness constraint to govern the
interpolation of the missing values. I could perform the
interpolation directly (by locally based smoothing, say)
and then do the conventional FT. Or I could truncate
the Fourier functions at a suitable frequency and per-
form a least squares regression. Or - a modification of
the truncation - I can perform a "regularised" LSR in
which the high frequencies are penalised relative to the
low ones. In this paper I will examine a combination of
truncation and regularisation and show that it is neither
as crudely heuristic, nor as computationally expensive,
as one's initial "knee-jerks" might suggest. It is in fact
an extremely quick and accurate method of interpolating
a (cyclical) function. It may be extended to the recovery
of a vector function from partial data - for example we
can recover the full flow field around a closed contour,
given only the normal component of flow.

The degree of "smoothness" of a function is normally
defined as the integral of the square of some differential
quantity. For a scalar function Q in one dimension the
most common measure is:

dx (2)

Higher order "smoothness" may be defined in terms of
higher derivatives. In general smoothness of "order n" is

I ££ , 2
1 dxn

dx (3)

Differentiation in the function domain corresponds to
multiplication by iw in the Fourier domain. If we write

Q = a0+aicos(x)+a2cos(2x)+a3cos(3x)...+b1sin(x)+b2sin(2
(4)

— = -aisin(x)-2a2sin(2x)-3a3sin(3x)...+bicos(x)+2b2co.

(5)
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ParsevaPs theorem tells us that the energy (integral of
the square) of a function is the same as the energy in the
Fourier domain i.e.

(6)

This is a very useful result because it points the way
to a very simple procedure for optimising smoothness in
a Fourier expansion fitted to a partially sampled func-
tion. It also enables us to truncate the expansion in
a principled way. The Fourier component of frequency
omega costs us w2" times more in "roughness" than the
component associated with the fundamental frequency.
Depending on the required accuracy and the premium
placed upon smoothness relative to compliance with the
data, frequencies above some level can be safely ignored
- particularly for higher-order definitions of smoothness.

Figure 1 shows observations made on a function F(x);
the set of observations is not complete. Figure 2 shows
the weighting function W(x) which, for simplicity, we
will assume to have value 1 everywhere we have made an
observation and zero elsewhere. The simple least squares
fit of our observations to any given set of basis functions
E is given by the solution of the linear equations Va =

y-
V is the variance-covariance matrix of every pair of

functions under the weighting function, viz. the ele-
ment (i, j) is ^2X W2EiEj. a is the vector of coefficients
that we seek to estimate, y is the vector of covariances
between the E and the weighted function WF. In this
case that the E's are sines and cosines y is simply the
Fourier Transform of WF suitably arranged.

If the number of basis functions E is in excess of
the number of observation points on F the variance-
covariance matrix is degenerate - and we might anyway
desire to "regularise" our solution to be as smooth as
is consistent with our trust in the data. Regularisation
takes the form of adding positive terms to the diagonal
elements of the variance-covariance matrix in a way that
reflects prejudice against the corresponding basis func-
tions.

The problem becomes (V + rl)a = y where r is a
vector containing positive constants A?.

The solution minimises

(7)

For nth order smoothness on we set A equal to some
constant K multiplied by w". Here K acts as the "smooth-
ing pressure". A low value implies that the solution will
comply slavishly with the data (though any interpola-
tion will be as smooth as possible). A high value implies
a high premium on smoothness relative to compliance
with the data.

A pleasant surprise awaits us when we come to form
V. We discover we can read its elements off the Fourier
Transform of W2\ For example the element

Y W2sin(ax)cos(bx) (8)

can be rewritten (ignoring a factor of 0.5);

W2sin((a + b)x) - in{(a + b)x) (9)

...a simple difference between two Fourier coefficients
of the function W2 (and similarly for other cross terms).
It is thus unnecessary to explicitly evaluate the basis
functions and to form and accumulate cross products of
them. You just re-arrange The FFT of the square of the
weighting function! The algorithm is:

1. FFT on W2 and "rewrite" to obtain V

2. FFT on WF to obtain y

3. Add regularisers to the diagonal elements of V

4. Solve for a

5. Reconstruct the interpolated function F by reverse
FFT if desired.

Figures 3-6 show the curve fitted to F under four dif-
ferent regularisation conditions. Figure 3 shows first
order smoothing combined with quite high smoothing
pressure. Figure 4 shows first order smoothing with low
pressure (the compliance with the data points is per-
fect). Figures 5 and 6 show the results of second order
smoothing (n=2) for low and high pressure respectively.
These results are to all intents and purposes identical
to those that would be obtained with gradient descent
methods - only the closed-form least-squares method is
order of magnitude faster. Note further that iterative
methods are intrinsically non-parallel whereas the FFT
and matrix-inversion operations involved in our proce-
dure are ideally suited to distributed computation on
such devices as transputers.

In these examples 15 "explanatory functions" are used
- the constant and the sine and cosine at the first seven
frequencies. In most practical situations this would
surely suffice the fussiest interpolator. The data would
have to be very good to justify fitting further harmonics.

The superiority of the least-squares technique becomes
more marked as the desired order of smoothness is in-
creased. Iterative techniques for obtaining second- or
higher order smoothness are excruciatingly slow . The
least-squares technique actually gets faster with high or-
ders because the regularisation term grows more rapidly
with frequency and the series can be truncated at an
early stage.
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Extension to recovery of a vector flow field from "nor-
mal" components is relatively straightforward. The re-
lationship between normal flow and the true flow at any
point is given by the motion constraint equation:

v — Ux + Wy (10)

where v is the flow in the normal direction, x and y are
the components of true motion, and U and W are the
cosine and sine of the direction of the normal relative to
the x-axis.

To obtain a function-fit to the full flow field we sim-
ply write x and y as (independent) Fourier expansions
on normalised arc-length around the closed contour. We
solve the set of linear equations that result from making
observations of v, U and W in a (stabilised ) least squares
sense. Note that the variance-covariance for the problem
contains products of the form Ylu2EiEj,12v'iEiEj,
and Y^UVEiEj. Three FFT's are required in order to
obtain these terms (on U2, V2 and UV). Otherwise the
algorithm is as given above for the scalar case.
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I have described a closed-form method of obtaining the
smoothest flow-field from edge data associated with a
closed contour. This method exploits certain benign
properties of the Fourier series. The method is much
faster than iterative methods, even on serial hardware.

The reader will have seen many pictures of recon-
structed flow fields, but have you ever seen an invisi-
ble flow field? A circle rotating around its centre has
zero normal flow everywhere. In general: a curve yields
zero normal flow in a field for which it is a streamline.
The hypothesis of zero motion will be returned by a
stabilised least squares method in these circumstances
(it is certainly the smoothest solution available!). Sup-
pose, however, that we insist on non-zero flow. We want
the smoothest flow along the curve subject to the con-
dition that the flow has a given level of energy. It can
be easily shown that the coefficients of such a field are
given by the eigenvector of the variance-covariance ma-
trix that corresponds to the lowest eigenvalue. Figure 7
shows the result for the boundary of a fibroblast (cour-
tesy ICRF). Note how the "internal flow" slows down in
regions of high curvature. This raises the intriguing pos-
sibility of applications to the segmentation and "natural
parametrisation" problems.
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