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Passive navigation of mobile robots is one of the chal-
lenging goals of machine vision. This note demonstrates
the use of optical flow, which encodes the visual infor-
mation in a sequence of time varying images [1], for the
recovery of motion and the understanding of the three
dimensional structure of the viewed scene. By using a
modified version of an algorithm, which has recently been
proposed to compute optical flow, it is possible to obtain
dense and accurate estimates of the true ID motion field.
Then these estimates are used to recover the angular ve-
locity of the viewed rigid objects. Finally it is shown that,
when the camera translation is known, a coarse depth
map of the scene can be extracted from the optical flow
of real time varying images.

The navigation of a robot in any environment requires
the knowledge of the motion of the robot relative to
the environment, the three dimensional structure of the
scene and the motion parameters of the object moving
in the scene. These informations can be obtained by us-
ing active sensors and/or by passive vision, provided by
cameras mounted on the robot.

In this note it is shown how passive vision can be used
to recover depth when the camera on the robot is trans-
lating and angular velocity when the camera looks at
rotating objects. The proposed technique first computes
the optical from a sequence of time varying images by
using a modification of the algorithm recently proposed
[2,3]. The angular velocity can be obtained by exploit-
ing mathematical properties of the 2D motion field [5].
Depth is obtained from the computed optical flow, using
an equation already proposed by many authors (Horn
1987 , Tommasi personal communication).

THE COMPUTATION OF OPTICAL
FLOW

The motion of objects in the viewed scene at every time
t defines a 3D velocity field, which is transformed by the
imaging device of a T. V. camera in a ID vector field v =
(vi(x,y),v2(x,y)), usually called the ID motion field.

It has been shown [3] that a ID vector field close to
v, usually called the optical flow u, can be obtained by
solving the vector equation

- grad E = 0
at (1)

where d/dt indicates the total time derivative (or the
Eulerian derivative) and grad E is the spatial gradient
of the image brightness E(x,y,t). Fromeq. 1 the optical
flow u can be computed as
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where H is the Hessian matrix of E(x,y).

The relation between the optical flow u and the true ID
motion field v is:

_1 / T dE\
u = t J + H [Jv gra.dE — grad ——I (4)
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where 3vT indicates the transpose of the Jacobian ma-
trix of v.

It is evident from eq. 2 that numerical stability of the
computation of the optical flow requires a robust inver-
sion of the matrix H, which is garanteed when det H
is large, and the conditioning number CJJ of the ma-
trix H is close to one [7]. From eq. 4 it is evident that
when the term in brackets is bounded the optical flow u
is close to the true ID motion field v when the entries
of the matrix H~* are small. Since H is symmetric the
conditioning number C J J is equal to Amaa;/Amir, where
Xmax and Am,n are the largest and smallest of the two
real eigenvalues of H. As a consequence when det H is
large and CJJ is close to one, the two eigenvalues Amar

and Am(n will be both large ensuring that:

i. the computation of the optical flow from eq. 2 is
numerically robust;

ii. the optical flow u is usually close to the true 2D
motion field v, with the exception of those locations
. . . . , T ^ T dE
in the image where Jv or —r— are very large.

Therefore the conditions det H large, and CJJ ~ 1 usu-
ally garantee good recovery of the 2D motion field.

We now describe the procedure used to compute the op-
tical flow from a sequence of time-varying images, such
as the one shown in Figures 1A and 3A.
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Figure 1. Computation of optical Sow for a ro-
tating object. A) One frame of a sequence of an
indoor scene. B) Row optical How obtained with
spatial gaussian smoothing with mask size = 5
pixels, temporal gaussian smoothing with mask
size = 9 pixels, Det H > 0.05 and CH < 10.

The optical flow obtained by solving eq. 2 is first com-
puted at each location. Many vectors with an erroneous
magnitude or direction are clearly present. By choosing
only those vectors, obtained when the computation of
H~* is numerically robust (det H large and C J J ~ 1) a
sparse, but almost exact optical flow is obtained (Figures
IB and 3B).

ANGULAR VELOCITY FROM OPTI-
CAL FLOW
In order to recover a dense and meaningful optical flow
it is desirable to fill in the empty areas of the optical
flow by using a filling-in procedure. The optical flow
is then smoothed by the convolution with a gaussian

B

Figure 2. Computation of angular velocity. A)
Optical Sow of Figure IB after filling-in and
smoothing with gaussian filter with mask size
= 21. B) Angular velocity computed from the
optical Sow of Figure 2A versus time (in de-
gree /fra me).

symmetrical filter and the results are shown in Figures
2A and 4A. In Figure 1A a scene in which the rotation
axis was about parallel with the optical axis of the view-
ing camera is displayed. In Figure 2A the immobile point
of the rotation, i.e. the point perspective projection of
a point which lies on the rotation axis, is clearly present
and the angular velocity u is equal to |A|, where A is the
eigenvalue of the Jv matrix computed to the immobile
point (if the optical axis is parallel to the rotation axis
we have |Ax | = |A2|) [3]. Figure 2B compares the true
angular velocity (solid straight line) and the computed
angular velocity for the sequence of images of Figure 1A.
The agreement between the true and computed angular
velocity depends on the texture of the scene. When the
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Figure 3. Computation of optical How for ego-
motion. A) One frame of a sequence represent-
ing two books stacks acquired by a camera mov-
ing towards them. B) Row optical How obtained
with a gaussian smoothing with mask size = 7
pixels, no temporal smoothing, Det H > 0.1 and
conditioning number CJJ < 5. The focus of ex-
pansion is visibly located at the left side of the
image plane; the angle between the direction of
translation and the optical axis was of about 10
degrees.

viewed scene is densely textured the accuracy can be
as high as 95% (the mean accuracy in the sequence of
Figure 1A is 95.4%)

DEPTH FROM OPTICAL FLOW
Optical flow can also be used to recover depth from mo-
tion by using the formula

B
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Figure 4. Computation of a depth map. A) Opti-
cal How of Figure 3B after Hlling-in and smooth-
ing with a gaussian Hlter with mask size = 17. B)
Depth map obtained by the optical How of Fig-
ure 2C. The true distances from the image plane
were 37 cm, 56 cm and 72 cm for the books stack
in the lower left side, for the one on the right side
and for the background respectively. Computed
mean values for the three regions were 35 ± 5 cm,
61 ± 9 cm and 62 ± 13 cm.

Z — Vr
D

(5)

where ucamera is the velocity of the moving camera, D
is the distance of the point (x,y) on the image plane
from the focus of expansion Fe, V is the amplitude of
the flow in (x,y), and Z is the depth of the point in
the scene projected in (x, y). Figure 3A shows an image
from a sequence taken by a camera translating towards
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two book stacks at different depth. The books and the
background were covered with newspaper sheets in order
to increment the texture of the scene. To avoid the com-
putation of depth near the focus of expansion, where the
optical flow values are noisy, the angle between the direc-
tion of translation and the optical axis was set to about
10 degrees. Consequently the focus of expansion lied
near to the image boundary. Figure 3B reproduces the
computed optical flow and Figure 4A the optical flow af-
ter the filling-in and smoothing procedures. When depth
is averaged over the results obtained from a few frames
we obtain the map shown in Figure 4B. The results ob-
tained for the higher book stack of the scene are in good
agreement with the true depth, whereas parts of the 3D
structure of the lower one are noisy and almost indistin-
guishable from the background (see legend for numerical
details).

This note presents an algorithm which is adequate to
compute a dense optical flow from which it is possible to
recover motion information and depth. The computation
of optical flow occurs in two steps: in the first step by
using eq. 2 a row optical flow is obtained out of which
only the reliable displacement vectors are selected; in
the second step a dense optical flow is obtained by filling
in holes of the optical flow produced in the first step.
Different filling-in procedures can be used with different
results. The proposed algorithm seems very suitable to
solve the problem of motion analysis in machine vision.
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