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tions yield two quartic polynomial constraints, gi(v)
= 52(v) = 0, on the translational velocity, v, of the
rigid body. We show that gi(v) and ?2(v) have, in gen-
eral, exactly 16 distinct common zeros, and we show
that, in general, ten of these common zeros yield values
of v compatible with the 2D motion field. An alterna-
tive proof that there are ten values of v, based on the
theory of ambiguous surfaces, is sketched. Finally some
questions are raised concerning the connections between
the theory of image velocities and the theory of image
displacements.

The problem of obtaining rigid velocities compatible
with a given set of image velocity vectors is algebraic in
that it depends on the solution of simultaneous polyno-
mial equations. We show that five image velocity vectors
yield two quartic polynomial constraints on the transla-
tional part of the rigid velocity, and that of the 16 com-
mon zeros of these two quariics, exactly ten yield rigid
velocities compatible with the image velocities. An al-
ternative argument that there are in general exactly ten
rigid velocities compatible with five given image veloci-
ties is briefly sketched.

The fact that as many as ten rigid velocities are ob-
tained indicates that the problem of finding rigid veloci-
ties compatible with image velocities is intrinsically dif-
ficult.

A body moving relative to a camera gives rise to
an image that changes over time. These image changes
are described by a 2D motion field of velocity vectors
defined on the projection surface of the camera [1,2,3].
Information about the motion and shape of the body
can be obtained from the 2D motion field. In particular,
if the 2D motion field arises from a single rigid moving
body, then it can yield the shape and velocity of the
body up to a single unknown scale factor [1,2,3,4].

The problem of recovering the shape and velocity
of a rigid body from the associated 2D motion field is
algebraic, because it depends on solving a number of
simultaneous polynomial equations. We investigate the
properties of these equations, and show that there are,
in general, exactly ten rigid velocities compatible with
a given 2D motion field containing five image velocity
vectors. The figure ten in this context is a fundamental
measure of the complexity of the problem of recovering
rigid body motion from image velocities, analogous to
the degree of an algebraic curve. Ten is considered high,
indicating that the problem is difficult.

The phrase 'in general' means that although some
2D motion fields containing five image velocity vectors
are not compatible with exactly ten rigid velocities, such
2D motion fields form a negligibly small part of the
space of all 2D motion fields containing five image ve-
locity vectors.

We describe some general properties of polynomials
and then obtain the equations for the 2D motion field
arising from a single moving rigid body. These equa-

POLYNOMIALS

We use TZn to denote n-dimensional Euclidean space,
and Vn to denote n-dimensional projective space. The
points of Vn are represented by n + 1-tuples of coordi-
nates such that at least one coordinate is non-zero. Two
points x, y of Vn with coordinates a;,-, y,- are identified
if and only if there exists a non-zero scalar A such that
Xi = Xyi for 1 < i < n + 1.

Let x = (x\,X2,X3). A polynomial /(x), homoge-
neous in the coordinates of x, defines a plane curve in
V2. A point u is on /(x) if and only if /(u) = 0. Let
h = V/(x)|u = (df/dxu df/dx2, df/dx3) evaluated
at u. A point y is on the tangent line to /(x) at u
if and only if h.y = 0. If h = 0 then /(x) is said to
have a singular point at u. The condition that /(x)
has a singular point somewhere in V2 is expressible as
a polynomial constraint on the coefficients of /(x).

Plane curves /(x), g(x) are said to intersect transver-
sly at u if /(u) = g(u) = 0 and V/(u) x V#(u) ^ 0.
Transverse intersections are stable, in that if/(x), g(x)
are subject to small perturbations then the perturbed
polynomials intersect transversely at a point near to u.

Plane curves /(x), g(x) of degrees m, n respectively,
intersect at mn points, and these points are distinct if
and only if each intersection is transverse. If /(u) =
</(u) — 0, but /(x), g(x) do not intersect transversely
at u then /(x), g(x) are said to have a multiple common
zero at u.

A property defined on Vn holds in general if it holds
on an open dense set of Vn. If a polynomial is non-zero
at just one point of Vn then it is non-zero on an open
dense set of Vn, thus a polynomial defined on V" is
either identically zero or it is in general non-zero.

Further information on polynomials, curves and pro-
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jective spaces is given in [5].

2D MOTION FIELDS

The 2D motion field is defined to be the projection of the
three dimensional velocity of a body onto the projection
surface of the camera [1,2]. The velocity of a point on
the body surface projects to an image velocity vector,
Qi, and the point itself projects to the base point, Qi,
of Q,-. We assume that the body is rigid, and we assume
that the image is formed by polar projection onto the
unit sphere, centred at the projection point.

The velocity of a rigid body in space is described
by a translational velocity v, and an angular velocity
O. (See [6]). The axis of fl is chosen to pass through
the centre of the projection sphere. With this choice of
axis, v, fl are uniquely determined by the motion of the
rigid body.

The main equations

The image velocity vectors, Q,-, with base points, Q,-,
are related to v, ft as follows [1,2,3,4]

Q, = [v - (v.Q,-)Q<]#< + f i x Q j (1)

where Ki is the inverse distance to the rigid body sur-
face in the direction Q,-. A value of v is said to be
compatible with the 2D motion field if there exist asso-
ciated values of il and Ki such that (1) holds.

It follows from (1) that v — 0 is, in general, not
compatible with the 2D motion field because the Q,-
would otherwise be coplanar. As we only consider the
general case, we assume v ^ 0. If v ^ 0 is compatible
with (1) then Av is compatible with (1) for any A ^ 0.
It is thus natural to regard v as an element of V2.

Define Rj by R, = Q,- x Q,-. On taking the dot
product of (1) with Qi x v, we eliminate Ki to obtain

The R,-, Q, are known quantities obtainable from the
image, and v, fl are unknown quantities, to be deter-
mined by solving (2). Our main result is that if five
pairs Qi, Q,- are given then there are exactly ten values
of v satisfy (2), and hence satisfy (1). We assume from
now on that 1 < i < 5.

On taking the scalar product of (3) with Q,- we obtain
a»v.Qi + bi = 0, thus

Qi = [v — (v.Qi)Qi]di + ft x Q, (4)

Equation (1) follows from (4) on setting Ki = ai.

We complete the proof by showing that v x Qj ̂  0
for all i. If, for example, v x Q5 = 0, then without loss
of generality, v = Q5. We write the first four equations
of (2) in the matrix form r(v) = M(v)ft. As fi varies
over 7£3, M(Q5)fi varies over a subspace 5 of TZA of
dimension at most three. If (2) has a solution with v =
Q5 then S includes r(Qs), however, r(Qs) varies over
the whole of H4 as the R, vary, thus r(Q5) = M(Q5)fl
does not, in general, have a solution for ft.

Properties of (v.Q,)Q, — v

We require the following two results: if v varies, with
the Qi fixed and in general position then (i) no three of
the vectors (v.Q,)Qi — v are ever collinear; and (ii) the
five vectors (v.Q,)Qi — v always span TZ3. The proofs
are omitted.

Define cubic polynomials /ijfc(v) by

= det
'(v.Q.-)Qi-v
(v.Qj)Qj-v (5)

where 1 < i < j < k < 5. We show that the /,jfc(v) do
not, in general, possess a singular point.

The /ijjt(v) form a family of polynomials indexed
by the components of Qi,Qj,Qjt- The condition that
fijk(v) possess a singular point can be expressed as a
polynomial constraint on the coefficients of /,jjt(v), and
hence as a polynomial constraint c(Q,-, Qj, Q*) = 0 on
Qi, Qj, Q,t Either c(Q*, Qj, Q*) = 0 for all Q,-, Q;-, Qk

or c(Q,-, Qj-, Qjt) 7̂  0 in general, thus it suffices to find
just one triple Q.,Q;,Qi for which c(Qj,Qj,Qfc) ^
0, or equivalently for which /,jj;(v) does not possess a
singular point. To this end, select

Qk = (0,0,1)

On substituting the above values of Qi, Qj,
(5), we obtain

into

No solutions are lost

We show that we do not overlook any solutions to (1) by
passing to (2). In other words, we show that if v ̂  0 is
compatible with (2) then O, Ki can be found such that
(1) holds. We obtain from (2)

Let v x Q
such that

( Q i - n x Q,).(v x Qi) = 0

0 for all i. Then there exist scalars a,-, &,•

Qi = a,v + 6iQi + f lx Q, (3)

v/3
fijk(v) = ^ -

1
+ v3v

2
2 + - - vf)]

It can be shown that V/,-jfc(v) ^ 0 for all v, thus /ijjt(v)
does not possess a singular point for the three specified
values of Qi, Qj, Qt, thus fijk(v) does not possess a
singular point in general.

Two quartic polynomials

The condition that the first four equations of (2) be
compatible with a single value of ft yields the quartic
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polynomial constraint gi(v) = 0 where [3,6].

\R4.v (v .Q 4 )Q 4 -v ,

In addition to gi(v) we require a second quartic con-
straint arising from (2), namely q2(v) = 0 where

Ri.v ( v . Q i ) Q i - v '

!a-v (v .Q 3 )Q 3 -v
•R 5 v (v .Q 5 )Q 6 -v ,

The quartics 9i(v), q2(v) are linear combinations of the
fijk(v) defined by (5).

It follows from (1) and (2) that any translational
velocity compatible with (1) is included amongst the 16
common zeros of qt (v), <?2(v).

Case 2: /i23(u) = 0, /i24(u) ^ 0. We subject R3,
R5 to perturbations 6H3, 6R5 such that 6R3.U = 0,
6K5.u # 0. We obtain

= /i25(u)<5R3 - (<5R5.u)V/i23(u)

We have seen that the fijk{v) do not, in general,
possess a singular point, thus we assume V/123(u) 7̂
0. It follows that 6R3, 5R5 can be found such that
V(<?i + 5?i)(u), V(?2 + £g2)(u) are non-zero and non-
parallel.

A series of arguments similar to that given in case 2
shows that suitable perturbations 6q\, 8q2 can be found
provided at least one of /i23(u), /<j4(u), /tjs(u) is non-
zero, where 1 < i < j < 3. This is sufficient to show
that suitable 8qi, Sq2 can be found, because if all such
/,j/t(u) are equal to zero then the vectors (u.Q,)Q, — u
would be coplanar, contradicting result (ii) above.

DISTINCT COMMON ZEROS

We prove that <7i(v), ?2(v) have, in general, exactly
16 distinct common zeros by obtaining just one pair
of quartics 91 (v), g2 (

v) with this property. This suf-
fices, because the condition that <?i(v), g2(v) have one
or more multiple common zeros reduces to an algebraic
constraint on the coefficients of Q;, Q,-. It requires just
one example to show that this algebraic constraint is
non-trivial.

Our method is to perturb a given pair q\ (v), ?2(v)
by a small amount such that the resulting quartics have
only transverse common zeros. This is done in stages
as follows. Let 9i(v), g2(v) have a multiple common
zero at u and n additional transverse common zeros.
We show that there exist small perturbations 6q\, Sq2
such that (31 + 6qi)(v), (q2 + 8q2)(v) have a transverse
common zero at u. If 6qi, 6q2 are sufficiently small then
the n transverse common zeros of qi (v), g2(v) are pre-
served, because transverse common zeros are stable. It
follows that (qi + 8qi)(v), (32 + <$<Z2)(v) have at least
n + 1 transverse common zeros. On repeating this pro-
cess at most 15 times we obtain the required pair of
quartics.

The proof that suitable 8qi, 6q2 can always be found
proceeds as follows. Let 5fi(v), <72(v) have a multiple
common zero at v = u. Then

Case 1: /i23(u) ^ 0. We subject R4, R5 of (2) to
perturbations 6R4, 6R5 such that i5R4.u = 6R5.U = 0.
Let 8qi(v) and <$g2(v) be the corresponding perturba-
tions of ?i(v) and g2(v). We have <5gi(u) = 6g2(u) = 0
and

u) = -/i23(u)<5R4

It is thus possible to choose 6K4 and <5R5 such that
V(qi + Sqi)(u) and V(q>2 + ̂ ?2)(u) a r e non-zero and
non-parallel.

ZEROS AND THE 3D MOTION

We have seen that any translational velocity v compat-
ible with (1) is a common zero of gi(v), g2(v). The
converse result does not hold however because <7i(v),
g2(v) have common zeros not compatible with (1). We
show that a translational velocity u is compatible with
(1) if and only if u is a common zero of qi(v) and g2(v)
and if, in addition, the vectors

(R,-.v,(v.Q i)Q,-v) 1 = 1,2,3 (6)

are linearly independent at v = u.

Suppose firstly that u is a common zero of <h(v),
g2(v) such that the vectors of (6) are linearly indepen-
dent at v = u. By hypothesis gi(u) = g2(u) = 0, thus
there exist non-zero vectors Wj, W2 such that [6]

fRj.u (u.QOQi-ii
R2.u (u.Q2)Q2 — u
R3.u (u .Q 3 )Q 3 -u

vR4.u (u.Q4)Q4 — u>

(7)

and
Liu (u.Q1)Q1-u>

R2.u (u.Q2)Q2 — u
R3.u (u .Q 3 )Q 3 -u

.R5.u (u.Q5)Q5 — u,
The vectors Wj, W2 are both normal to the subspace
of 7£4 spanned by the vectors of (6). By hypothesis, this
subspace is of dimension three in 7Z.4, thus Wi and W2

are parallel. We scale Wi and W2 such that Wi = W2.

We denote (W;)j by Wij, and we define w = [w\,
w2, W3) by Wj = —W\ j+i/Wii. (We can assume W\\ ^
0 since in the case W\\ = 0 we obtain from (7), (8)
and the hypothesis that the vectors of (6) are linearly
independent the result Wj = W2 — 0, contradicting
the definitions of Wi, W2.) Equations (7), (8), and
the definition of w yield

201



It follows from (9) that v = u, fl — w is a rigid velocity
compatible with (1).

Next, suppose that u is a common zero of <h(v),
92 (v) such that the three vectors of (6) are linearly de-
pendent. We show that u is in general not a transla-
tional velocity compatible with the 2D motion field.

It follows from our hypothesis concerning u that the
vectors (u.Q,-)Q;—u, i = 1,2,3 are contained in a single
plane II. The vectors (u.Qi)Q* — u (1 < i < 5) span
TZ3, thus at least one of (u.Q4)Q4 — u, (u.Q5)Qs - u
is not contained in II. It follows that R4, R5 and Q4,
Qs can be chosen such that

det

R4.11 (u.Qi)Qi-u>
R2.U (u.Q2)Q2 — u
R 4 u (u.Q4)Q4 - u

5.u (u.Q5)Q5-u>

The choice of R4, R5 and Q4, Q5 does not affect the
condition qi(u) = 92(1) — 0, since we are assuming that
the vectors of (6) are linearly dependent. It follows that
u is in general not compatible with (2).

THE MAIN RESULT

We have seen that a possible translational velocity v is
compatible with the 2D motion field if and only if v is
a common zero of 9i(v), 32(v) such that the vectors of
(6) are linearly independent, and we have shown that
3i(v), <Z2(v) have 16 distinct common zeros. We now
show that there are exactly six values of v such that the
vectors of (6) are linearly dependent. The main result
that there are, in general, exactly 10 = 16-6 values of v
compatible with a 2D motion field containing just five
flow vectors then follows.

Define the matrix A by

A= (v .Q 2 )Q 2 -v =
(v .Q 3 )Q 3 -v

where the At are 3 x 3 matrices with coefficients inde-
pendent of v. Let g(v) = det(Aiv\A2v\A3v). We recall
that the row rank of a matrix is equal to the column
rank of a matrix. The rows of A are linearly dependent
if and only if v satisfies both

</(v) = /i23(v) = 0 (10)

and
0 (11)

There are at most nine distinct values of v satisfying
(10) because g(v), /i23(v) are cubic plane curves, and
amongst these there are at most three distinct values of
v, corresponding to the roots of the eigenvalue equation

det(vl2 - Ai43) = 0

for which (11) fails to hold.

Direct calculation reveals that there are in general
exactly three distinct values of v for which A2Y x A3V =

0. (To simplify matters, coordinates can be chosen such
that Qi = (1,0,0) and (Q2)3 = 0.) It is thus sufficient
to show that there are, in general, exactly nine values of
v satisfying (10), and for this it is sufficient to produce a
single example for which there are nine distinct values of
v satisfying (10). The example is constructed as follows.

Set Ri = R2 = 0. Then the first two rows of A are
linearly dependent if and only if v = Qi, Q2 or Qj x Q2

(as points of V2). Suppose that v is not equal to Qi,
Q2 or Qi x Q2. In this case (with Ri = R2 = 0) the
rows of A are linearly dependent if and only if

R3.v = 0 and /i2s(v) = 0 (12)

There are, in general, exactly three values of v satisfying
(12), because R3.V = 0 is a linear constraint on v and
/i23(v) = 0 is a cubic constraint on v. In general Qi,
Q2, Qi x Q2 are not on the line R3.V = 0, thus we
obtain a total of six distinct values of v for which the
rows of A are linearly dependent, and these six values
of v satisfy (10).

It follows that if Ri = R2 = 0 then there are exactly
9 = 6 + 3 distinct values of v satisfying (10), thus there
are, in general, exactly nine distinct values of v satisfy-
ing (10), hence there are, in general, exactly six values
of v for which the rows of A are linearly independent.

AN ALTERNATIVE METHOD

The above proof that there are, in general, exactly ten
distinct rigid velocities compatible with five given image
velocities is closely tied to the image plane. A sketch
of an alternative proof of the same result is now given
based on constructions in 3D space and the theory of
ambiguous surfaces [3,4].

We recall from [4] that if points P in space moving
rigidly with velocity v, fl give rise to image velocities
that are also compatible with a second rigid velocity v',
fl' then the points P lie on the quadric surface

l.P = (W'.P)(v'.P) - (W'.v')(P.P) (13)

where 1 = v' x v and W = ft - fl'. Equation (13) can
be written in the form

PMP = 0 (14)

where M is a symmetric matrix and 1 is a vector satis-
fying l.v = 0.

Let five image velocities Q, with base points Qj be
given, together with a single compatible rigid velocity
v, fl. Then we can construct points P,- in space with
velocities P, = v + fl x P, such that P, projects to
Qi and P, projects to Qj. Let S be the space of all
quadrics of the form (14) that contain the five points P,.
The quadrics of 5 are subject to six linear constraints,
namely, l.v = 0 and
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thus S has dimension two and hence S is a copy of V2

embedded in the space of all quadrics. Each rigid ve-
locity v', ft' distinct from v, ft but compatible with
the Qj, Q,- yields a quadric in S with an equation of
the form (13). Thus, in order to count the rigid veloci-
ties compatible with the Q,-, Qt- it suffices to count the
quadrics in S of the form (13).

Let ip be the element of S specified by a pair M, 1,
and define the matrix N by

N = M - -TiSice(M)I

The quadric ij> has an equation of the form (13) for some
choice of v', W if and only if

det(JV) = 0 and 17V1 = 0 (15)

The equations of (15) define two cubic curves in S which
intersect at nine points. We thus obtain 10 = 9+1 rigid
velocities compatible with the five image velocities Q,.

CONCLUSION

We have shown that there are, in general, exactly ten
rigid velocities compatible with a 2D motion field con-
taining five image velocity vectors. Ten is thus a basic
measure of the complexity of the problem of obtaining
rigid velocities from 2D motion fields. In this context
ten is high, indicating that the problem is intrinsically
difficult.

Some of the ten rigid velocities may have complex
coordinates, in which case they can be discarded on
physical grounds. It may also be possible to discard
rigid velocities not yielding feasible positions for the
points on the rigid body surface giving rise to the 2D
motion field, in that some of the points are behind the
camera. An example of ten rigid velocities compatible
with five image velocity vectors is obtained in [7] using
the REDUCE computer algebra system.

An image velocity field can be regarded as the limit
of a sequence of image displacement fields, as the size
of the displacement becomes small. As a result it ap-
pears that many of the properties of image velocities
may carry over to the more complicated case of image
displacements. For example, a) Demazure [8] shows
that there are, in general, exactly ten rigid displace-
ments compatible with five given image displacements;
b) the two classes of ambiguous surfaces associated with
image displacements and image velocities, respectively,
happen to coincide; and c) the ambiguous surfaces aris-
ing from image displacements are subject to two cubic
constraints analogous to those quoted in (15) above [9].

Questions about the possible connections between
the theories of image displacements and image velocities
now arise. For example, let Si be a sequence of five point
image displacement fields such that Si —* S where cS is
an image velocity field. Let % be the set of ten rigid
displacements compatible with Si and let T be the set
of ten rigid displacements compatible with S. Then is
it the case that % -* T ?

It is known that there exist five point image displace-
ment fields compatible with ten real rigid displacements,
of which three are feasible [10], however Horn [11] has
carried out experiments indicating that many five point
image displacement fields are compatible with exactly
four real rigid displacements, only one of which is fea-
sible. It may be possible to obtain some understanding
of these results by studying the simpler case of image
velocities.
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