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This paper describes a stereo algorithm which matches
connected chains of edgels (curves) between images. It
is based on representing the curves as elastic strings and
measuring the amount of deformation the strings have to
undergo to transform between corresponding curves, and
incorporates the ideas of the disparity gradient and the
fact that matching sections of curve have to be of a similar
shape. This explicit use of shape information means that
a precisely known epipolar geometry is no longer crucial.
Pairs of potentially corresponding curves which lead to a
large deformation energy, are eliminated and the greatly
reduced number of potentially matching pairs are passed
on to a tree search stage. A typical result of running the
algorithm on a stereo triple is presented.

In the past, edge pixels (edgels) have usually been the
basic units used for matching in feature based stereo.
However, this is computationally expensive because of
the large number of pixels involved, and, more signif-
icantly, leads directly to the "correspondence problem"
being considered the central problem in stereo, due to the
number of possible matches for each pixel [1]. More re-
cently, line segments have been used so as to reduce the
number of primitives needing to be considered, thus al-
leviating both problems [2]. However, when dealing with
curves, piecewise linear approximations are unstable so
that the approximations can be significantly different be-
tween stereo images, and the number of straight line seg-
ments required to approximate a curve (to a pre-specified
tolerance) grows with the curvature of the curve. The
consequences of this can be seen in Figure 2 which shows
the result of running a careful reimplementation of Ayache
and Lustman's algorithm on a stereo triple, one of which
is shown in Figure 1; this contrasts with the very good
performance of the algorithm in a "linear" environment.

Also, although the correspondence problem is reduced,
the low level of descriptive information contained in a
straight line segment means that it is still non-trivial.
Consequently, there has been growing interest in using
curves as the match primitive. Some indication of the im-
portance of curves in human stereo vision comes from the
line drawing stereograms of Wheatstone [3] and his suc-
cessors, where it seems that the shapes of the curves are
crucial in determining the stereo correspondences (Fig-
ure 3).

Additionally, most stereo systems rely on a very tightly
known epipolar geometry to resolve the correspondence

Figure 1: One image of a trinocular triple that is used for
illustration. The image size is 512 by 340 pixels,
problem. However, the calibration parameters of a mo-
bile robot are likely to vary slightly with time and recently
work has been carried out on recovering the new rotation
from points matched between the images [4]. This paper
describes an algorithm for matching curves between stereo
images which is not heavily reliant on the calibration set
up since it is based on the idea that curves in the world
have very similar projections in the cameras. This simi-
larity is exploited by measuring how much a curve in (say)
the left image, has to be deformed to match a candidate
curve in the right image. The algorithm can work with
either binocular or trinocular sets of images, in the latter
case the extra image is used to match lines coinciding with
the epipolar directions in the first pair of images, and also
as a check on the correctness of the binocular matches.

Using The Similarity Of Curves
Between Images
Several algorithms for matching curves between pairs or
triples of stereo images have been put forward by, amongst
others, Keriven and Robert [5], Srinivasan et al. [6], De-
riche and Faugeras [7], and Nasrabadi et al. [8], whilst
Gazit and Medioni [9], and Schwartz and Sharir [10] and
Wolfson [11] have considered, respectively, the related
problems of matching curves in a motion sequence, and
matching to a template. However, we feel that these al-
gorithms do not adequately deal with the distortions in
shape which occur in stereo.

The similarities in shape between the projections of the
same world curve in stereo which the algorithm exploits,
stem from (i) the nature of perspective projections, and
(ii) the small distance apart of the cameras in the typical
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stereo system compared with the distance to the object.
As an example of the former category, Verri and Yuille [12]
have shown that the zeros of curvature of planar curves are
preserved, and this result can be extended to show that
the sign of curvature in the two images is the same unless
the plane of the curve cuts the line segment joining the
optical centres of the cameras. Unfortunately, maxima
of curvature are not preserved but usually they do not
move far between the stereo images. In addition to these
pointwise properties, the relatively small baseline nearly
always means that a section of the world curve undergoes
a similar distortion when projected into each camera.

However, although projections of the same curve are sim-
ilar in the different images, problems arise if they are ap-
proximated by say pieces of ellipses and then these pieces
are matched between images, because of noise and the dis-
tortion produced by slightly different perspective views,
leading to an unstable representation. Consequently, in
the algorithm described here, each curve is represented
as an elastic string/snake which can be locally stretched
or shrunk by (respectively) decreasing or increasing the
density of the curve's underlying parameter. (That is
for a parameterised curve r(p), p varies less rapidly in
"stretched" regions.) This provides a way of quantifying
the difference in shape between similar curves by repre-
senting each curve as an elastic string and measuring the
amount of stretching/shrinking needed to transform one
curve into another.

This approach has similarities with the curve tracking
work of Kass et al. [13], but, when dealing with the stereo
problem, they only consider one contour in each image,
and so all the emphasis is on reconstruction rather than
on matching. Furthermore, we place a heavy emphasis on
using shape information to bring two curves into corre-
spondence by way of a stiffness term, whereas Kass et al.
only use shape implicitly through their energy function
(see equation 1 below).

Representing A Curve By An
Elastic String
Each curve is represented by an energy function which
is composed of a stretching energy term which measures
the change in density of the curve's parameter, and a cur-
vature energy term which encodes shape information by
being defined so that points on the curve in higher cur-
vature regions have more energy than those in lower cur-
vature sections. The standard energy expression used by
Kass et al. [13] for an elastic string/snake representing a
parameterised curve r(p) = (x(p), y(p)), is

E =
dp2 dp (1)

where \{p) is a user defined variable which is usually taken
to be a constant.

The density of the curve's parameter along the curve is
obtained by minimising the integral of the energy over
the length of the curve. The effect of this minimisation is
to reparameterise the curve so that the parameterisation
is more dependent on the shape of the curve than would
have been the case from just using the arc length. This
reparameterisation is sensible in stereo as the arc length
is not the same between pairs of images but certain fea-
tures of the shape of the curve are either preserved or at
the least, very nearly preserved. In particular, in addi-
tion to moving their position very little between stereo
images, maxima of curvature require a higher concentra-
tion of samples to describe them than areas of lower cur-
vature where the rate of change is slower. (This greater
amount of information present in high curvature regions
formed the basis of Asada and Brady's Curvature Primal
Sketch [14].)

The nature of equation 1 can be clarified by using the
chain rule to differentiate r with respect to the arc length
s rather than p, leading to

dp*

where t is the tangent direction. Therefore, as

d\ dt ds „ ds

dp ds dp dp

where h is the normal direction and K is the curvature,
we have

dv
dp~

dr ds
ds dp

*ds
% so

d2T

df~
dtds
dp dp

df (2)

The first term in equation 2 encourages points to con-
centrate near corners whilst the second term encourages
ds/dp to vary as little as possible, thus counterbalancing
the first term. Hence it is not possible to fully control
how much emphasis is placed on corners by varying A
in equation 1. Several variations on equation 1 have been
considered by Weiss [15] with the idea of placing extra em-
phasis on corners, the main one being replacing d2r/dp2

by dt/dp. However, we place greater emphasis on maxima
of curvature by eliminating the second term from equa-
tion 2 by taking the scalar product of the first term in
the integrand of equation 1 with the unit normal n before
squaring it, that is

E =
dp2 A(p)

dr

Tp
dp. (3)

The Euler-Lagrange equation (in conjunction with equa-
tion 2) for the minimisation of this integral is

ds\\ ds dK (dsV

which formally shows that (assuming that A is positive
and that ds/dp is greater than zero to avoid degeneracy)
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the density of the parameterisation does increase with the
size of the curvature.

So far the energy formulation has been for the continuous
case, however it is more convenient to work in discrete
terms with a small number of points as the curves them-
selves are made up of a finite number of points, and as the
minimisation of equations 1 and 3 becomes computation-
ally easier. This can be done by placing points ("knots")
at equal spacings of the parameter p. For notational con-
venience, we will assume that Po has the value 1 and that
Pi has the value n, then placing knots at the integer val-
ues of p means that equation 1 can be rewritten as

(4)

where Eini(i) = | r i + 1 - 2rj + r-^2 + A(6s,)2 (5)

and r* is the position of the ith knot and (see Figure 4)

Using rj+i — ri_i as an approximation for the direction
of t,-, n,- can be calculated and the discrete formulation
of equation 3 takes the same form as equation 4 but with
the Eint(i) given by

Eint(i) = - 2r, X(6Sif. (6)

Results For A Single Curve

The edge pixels marked by an edge detector are linked
together into curves, and the knots are placed equidis-
tantly along the curves. They are then repositioned on
the curves using the dynamic programming approach of
Amini et al. [16] so as to minimise equation 4.

The effect of the different energy formulations of equa-
tions 5 and 6 can be seen in Figure 5. The left curve
displays the knots placed on a curve composed of the
intersection of two straight lines when using the energy
expression of equation 1, whilst the right gives the po-
sitions obtained from using equation 3 (with two knots
being located in the corner).

Figure 7 shows the curves extracted by a simple feature
point tracker after the basketball stereo triple have been
processed by a Canny edge finder. Figure 6 shows the re-
sults of knot placement following energy minimisation for
one of the curves shown in Figure 7. Figures 8 and 9 show
the values at each knot of the two energy components in
equation 3 for the curves in Figure 6 (where the starting
knot is the topmost one). It can be seen that the stretch
energy is low where the curvature energy is high and vice
versa, as is to be expected from the above discussion.

Matching Of Curves
So far only individual curves have been considered, but
when determining whether two curves are likely matches,

points on one curve have to be associated with points on
the other curve. This is carried out by defining an extra
("cross") energy term for each pair of corresponding knots
on the two curves, which aims to measure the deformation
needed to transform one curve into the other. This term
is required because not only do we want to measure the
amount of stretching/shrinking undergone in the trans-
formation, but also to have a term corresponding to the
"stiffness" of the curves. The minimisation process now
tries to position the knots so that the sum of the indi-
vidual curve energies (equation 6) and the cross energies
is as low as possible. In more detail, the cross energy
function is composed of two parts :- a disparity gradient
term (which is a way of introducing stiffness to the string),
and a similarity term (which encourages corners to match
against corners).

The disparity gradient term is similar to that used by Kass
et al. [13] except that we resolve into components paral-
lel and perpendicular to the estimated epipolar direction,
and also divide by the knot separations. The latter change
is so that the term corresponds more closely with the
notion of the disparity gradient idea from psychophysics
which forms the basis of the PMF stereo algorithm [17].
Formally, the disparity gradient component is defined as

_
ntity tra«ent{l) -6suft(i) + 6sright(i)

(7)

where the difference between the changes in the left and
right knot positions is

d» = rrightW - rright(' ~ l) ~ rleft(0 + rleft(l ~ *)>

e is an estimate of the epipolar direction, e^ is orthonor-
mal to this direction, and (3 and 7 are constants expressing
the strength of the belief in the epipolar directions. The
use of these different constants is so that, for instance,
there is a greater penalty paid for vertical lines being of a
different length between images, than for horizontal lines.

The similarity term is used in the energy expression to
bias corresponding knots on the two curves to be in re-
gions of similar shape. A measure of the shape of the curve
at a knot is given by the sizes of the two components of
equation 6 (Figures 8 and 9 show the component ener-
gies for the left and right projections of a world contour),
and so the similarity term is defined to be the sum of the
differences between these components for corresponding
knots (suitably scaled so that it does not dominate the
other energy terms).

The similarity and disparity gradient components have
different relative strengths depending on the shape of the
curve at that point. Near corners matching a "corner"
knot against a "non-corner" knot leads to a high similar-
ity energy which thus becomes the dominant term. How-
ever, in low curvature regions all the knots have similar
component energies and so the disparity gradient energy
has the relatively larger effect.
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Implementation Of The Curve Matching

Potential matches for a curve are found by finding the
curves in the second image which meet the (estimated)
epipolar lines. For each of these potential matches, the
curves are shortened using the (loose) epipolar geometry,
so that their end points not only correspond, but are not
on a section of curve which is parallel to the epipolar di-
rection. If the shortened curves are of a sufficiently similar
length (say within 30%), they are passed on to the main
matching stage. Here the internal energies of the curves
are minimised jointly with the cross energy.

After the joint minimisation, potential matches whose dis-
parity gradient energy (given by summing equation 7 over
the number of knots) divided by the number of knots, is
above a threshold are eliminated. The remaining pro-
posed correspondences are passed on to a search stage,
along with a value indicating how likely the match is. At
the moment, this value is the threshold value minus the
cross energy divided by the number of knots, all multi-
plied by the number of contour points.

Currently, no use is made of the contrast across the curves
(although use of this is envisaged in the near future), but
the potential matches which give rise to negative dispar-
ities or disparities greater than a threshold (usually 150
pixels) are eliminated.

Tree Search And Trinocular
Consistency Check
The curve matching stage although it returns very few
matches for each curve and a measure of their likelihood,
cannot eliminate all of the matching problem, if only be-
cause of cases where both images are composed of iso-
lated, vertical lines. However, the number of remaining
potential matches is now of a manageable size, and a tree
search can be carried out with the decision at the ith level
being to accept or reject match i. The best branch is the
one which maximises the sum of the scores from the curve
matching stage whilst subject to

1. The uniqueness constraint - a piece of curve cannot
have more than one matching section of curve.

2. The ordering constraint - if curve one is met before
curve two when moving along an epipolar line in the
first image, then the first curve's match is met before
the second curve's match in the second image.

The tree search is implemented by forming a graph whose
nodes are the potential matches and where two nodes are
connected unless they break one of the above conditions,
and then applying the standard clique finding algorithm of
Bron and Kerbosch [18]. Unfortunately, if a large number
of potential matches are passed on to this stage, the search
can be computationally expensive. However, if junction
information were available from the edge detector, this
search could be improved in terms of speed and reliability

and work is currently being carried out with this aim [19]
(and the use of junction information seems to be a factor
in the matching of Wheatstone's images [3]). Hopefully,
this will mean that after highly distinctive curves have
been matched, the matches can be propagated throughout
the images greatly reducing the search requirements.

So far only binocular matching has been considered. The
third camera is used to match curves which almost lie
along one of the epipolar lines for the other cameras,
and also as a check on the reliability of the binocu-
lar matches. The trinocular check entails determining
whether the binocular matches are consistent by check-
ing, for example, that if a right curve is matched to a
curve in the left image and also to a curve in the top
image, then the two resulting disparities should not be
significantly different. As the curve matching essentially
deals with the correspondence problem at the binocular
level, this trinocular consistency check is a quick and ef-
fective means of eliminating false matches which may have
slipped through the net.

Results And Concluding Remarks
Figure 10 shows the results of applying the algorithm to
the curves shown in Figure 7. In addition to its better
performance than Ayache and Lustman's algorithm on
curved objects, it is less dependent on a precisely known
epipolar geometry.

The current implementation of the algorithm takes sev-
eral minutes to run, with virtually all of this time being
spent in the minimisation of the curve energies and in
the tree search stages. As was mentioned above, work
is currently in progress to greatly reduce the amount of
searching needed in this latter stage by making use of
junction information. Whilst the time spent in the for-
mer stage could be significantly reduced by the use of a
more selective screening procedure than just using the ra-
tios of the curves' lengths, it seems that for near real time
performance, specialist hardware such as that developed
for dynamic time warping in speech recognition, would be
required.

The next stage of this work will involve combining the
stereo algorithm with motion by tracking the curves in
the left, right and top images.
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Figure 2: The matched line segments from running the
Ayache and Lustman algorithm on the image shown in
Figure 1.

Figure 3: A Wheatstone influenced curved line drawing
stereogram (published by Underwood k Underwood, Lon-
don).

Figure 4: The notation used in Equations 5 and 6.

Figure 5: Different knot placements resulting from the
two energy formulations discussed in the text. Left: the
energy formulation of Kass et. al. Right: the energy
formulation proposed in this paper concentrates energy
at corners, implicitly making them act as match tokens.

Figure 6: Knot placement along one of the curves ex-
tracted from respectively the left and right curve sets
-liown in Figure 7.
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Figure 7: The curves extracted from the stereo images of
the basketball.
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Figure 9: The final left and right stretch energies for
the curve shown in Figure 6 when the knots are initially
spaced 9 points apart.

I ,

..1
Figure 8: The final left and right curvature energies for
the curve shown in Figure 6 when the knots are initially Figure 10: The curves matched from the stereo images of
spaced 9 points apart. rigure 7.
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