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This work provides a segment-based alternative to the
edge-based stereo algorithm already existing in the TINA
system. Our starting point is the algorithm of Ayache &
Faverjon (1985). It attempts to recover groups of line-
matches having low local disparity variations. In our
implementation of Ayache & Faverjon's algorithm
matches were built quickly, but glaring mistakes occurred
and the general behaviour was difficult to control. There-
fore the constraints on the continuity of the world impli-
citly used in the original approach were reformulated to
achieve more robust matching, more particularly by
requiring mutual support between reconstructed 3-D seg-
ments. A new algorithm has been designed that is suit-
able for parallel implementation, where 3-D matches and
their neighbourhood relationships are explicitly computed,
cliques found (objects) and uniqueness enforced.

This paper describes a line based approach to binocular
stereo that augments the capabilities of the TINA system
(Porrill et al 1987, Pollard et al 1987). The already
existing stereo matching is edge-based utilising the PMF
algorithm (Pollard 1985) and its descendents. Whilst an
edge based approach is more general, image structures
that are amenable to description by linear approximations
can be efficiently and robustly matched by an alternative
strategy. Hence a combined approach is adopted allowing
either, redundant cross primitive consistency to give
increased robustness, or segment matching to seed match-
ing at the lower level to improve efficiency.

The starting point for this work is the segment matching
algorithm due to Ayache and Faverjon (1985) which
employs a hypothesis, propagation and test strategy to
identify corresponding segments. Only a small number of
well selected segments act as a basis for match
hypotheses, the remainder being found as a result of the
propagation stage. Their algorithm sets up a few likely
correct matches and propagates them. Along the propaga-
tion, a weak disparity gradient constraint is enforced
through an imposed limit upon the disparity difference
between neighbouring matched segments.
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In this way the algorithm can be thought to be identifying
the most geometrically plausible three-dimensional struc-
tures from the pool of potential matches by buiding them
recursively. Once a few but strong hypotheses have been
propagated independently, the final selection of matches is
achieved preferring those generated by the most success-
fully propagated hypotheses.

One disadvantage of the Ayache and Faverjon’s algorithm
is its unsuitability for parallel implementation. The finest
grain of potential parallel computation is the propagation
of the match hypothesis. In our serial implementation of
their algorithm only a small number of hypotheses
(between 5 and 15) are usually necessary to achieve full
matching, and only the correct hypotheses (a small pro-
portion) account for the largest proportion of computa-
tional effort because they propagate most widely. Further-
more, there is great redundancy in the matches raised by
these good hypotheses. The improvement of performance
with increasing number of processors soon achieves
saturation.

This paper describes an alternative segment based algo-
rithm more suited to a parallel approach. While our
current implementation is on a sequential machine it is
our intention to develop the algorithm to run on MARVIN
the AIVRU transputer-based vision architecture.

The other major departure from Ayache and Faverjon’s
original algorithm is that we prefer an implementation of
the continuity constraint based upon actual three dimen-
sional connectivity rather than the computationally less
expensive alternative of rough disparity similarity. The
more powerful constraint actually involves little extra
computational overhead when a simplified parallel
representation of the camera geometry is used.

1. LINE DESCRIPTION

1.1. Geometry and Representation

Edges are obtained from Canny operator (1986) at a sin-
gle high frequency (small sigma Gaussian smoothing).
Following their detection, edge-strings are formed by link-
ing edge pixels using a few simple heuristics. Straight-
line approximation employs a recursive fit (by orthogonal
regression) and segment strategy. Segmentation points are
added when the edge string line deviates from the current
line fit. Robustness and efficiency are obtained through
the use of a heuristic search strategy to identify those
regions of strings/sub-strings that are most amenable to



straight-line fit.

We have found this scheme to be more reliable at identi-
fying true straight lines consistently than more traditional
polygonal approximations usually intended to segment
edge-strings for data-compression purposes. However this
strategy proves to be less able to deal with data that does
not arise from linear features.

Line segments are rectified; that is they are reprojected
into a parallel camera geometry equivalent to the original
non-parallel one. This has the effect that the epipolar
constraint becomes a same raster constraint and the pro-
cess of 3-D projection is greatly simplified.

The left and right cameras have optic centers 0, and O,
respectively. The principal axes are perpendicular to the
interocular axis that connects the optic centers, Coplanar
image planes, parallel to the interocular axis are illustrated
in front of the optic centers for simplicity. The world
coordinate frame is located at the optic centre of the left
camera with axes along the focal direction (z : positive
towards the scene), the interocular direction (x : positive
away from the left optic center), and the direction mutu-
ally orthogonal to these (y : positive upwards). The coor-
dinate frames of each image are located where the princi-
pal axes intersect their respective image planes with the x
and y axes aligned with those of the world frame.

Consider a point P at (x, y, z) and its projection into the
left and right images at P;=(X,Y) and P.,=(X,7Y)
respectively. The disparity d between these projections is
given byd=X,- X,

It follows from similar triangles and algebraic manipula-
tion that
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where f is the focal length of the cameras, and / the dis-
tance between their optic centres.

Line segments are denoted L; and L, in the left and right
images respectively and as L in the 3-D world. Each line
segment is represented in the overdetermined fashion by
the attribute tuple

(P1, P2, V, C, con, length)

Where:

. P, and P, are end point vectors
. V is the direction P, to P,

° C the centroid

. con the average measured contrast along the line (or
its projection into the left image) which is measured
in the direction V with positive polarity defined as
"dark to the left/light to the right"

. length is the length of the line

1.2. Windows

Each image has a window bucket structure over the line
structure to provide efficient spatial access. Each image is
segmented into 16 by 16 grid of windows. Each window
has a line "bucket”, i.e a list of references to the lines that
intersect the window (these are accessed bucket(i][j] for
the window row i col j).-

Additionally each line has a list of windows it intersects.
Window buckets simplify the search for match candidates.
Search is restricted to the set of window buckets that lie
within the disparity search interval (which is of limited
extent). As shown below, buckets are also used for fast
computation of image-based segment neighbourood rela-
tionships

1.3. Line Matching

Line matches are identified provided they satisfy the fol-
lowing criteria (all these criteria are verified symmetri-
cally on a left-to-right and right-to-left basis):
(1) Only line features for which
- length 2 Iy,.
- Vi 2 cos(0,) where i is the horizontal axis
direction.
are used as matching primitives.
Small edge-strings are very often noisy and seldom
describe straight features of the scene. Therefore a
thresholding is made on the length of the segments.
O is an orientation threshold in order to eliminate
horizontal segments for which 3-D computation is
difficult.
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dient constraint for orientation.

We prefer this orientation constraint because the
disparity gradient is related to the slope of the 3-D
lines of the scene with respect to the z-axis. The
definition and use of the disparity gradient limit can
be found in (Pollard PMF 1985). With this formu-
lation, the limit on reorientation is tuned according
to the orientation itself. Thus, the angular
difference is maximal for vertical segments (V, = 0)
and null for horizontal ones (V, = 0). The value of
K is set between 1 and 3.




con 5 ;
< ¢ : a similar contrast constraint.

1

3 —<
©) ¢ con,
Since the contrast criterion is not very robust, the
value of ¢ is set relatively high (typically 3, 4).
However the mere sign of the contrast is still a
strongly discriminating feature.

Matches for L, must be intersected by the raster of
the centroid C; = (X}, Y,) of L,.

This is the epipolar constraint suitably adapted for
whole segments.

Matches must lie within the disparity range
[Diows Dhignl ; that is matches for L; must have X, in
the range [X; ~ Dyigp, Xi — Do)

The limit on the allowed range for disparity is
derived from the possible positions of the features
of the scene and corresponds to a depth range
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Given the existence of a match between L; and L, we

compute L as follows:

(i) First identify the intersection of L; and L, in the
vertical direction, call this Yy, to Y, and the
points of intersection of the of L; and L, with these

" "
rasters” Py, P,ﬁs , Pr,,» and Pr;..-ga'

(i) The 3-D end points of L are computed from
matches P, —P, ,and Pb..—,n_')Pm.-gn respectively to
gi\fﬂ wa and PMgp,.

(iii) The other attributes (except contrast) of L are com-

pl.lted fl'om wa and Phigk‘

Thus a set of 3-D lines involving a same left line L, is
generated:

Lfl- - { L;li lei tesey L:" }

Note that it is the intersection of the left and right image
features that give rise to the 3-D segment. A less conser-
vative approach would have been to adopt either left, or
right image feature (or their union) to provided the verti-
cal extent of the image projection of the 3-D primitive.

2. ALGORITHM OVERVIEW

Our basic approach is to construct all possible line match
structures (in 3-D) prior to a stage of parallel constraint
propagation. The limiting resolution of realistic parallel
implementation being the line segment. In order to sim-
plify the structure of the algorithm verification of matches
is performed with respect to one image only (the left).
Unlike Ayache and-Faverjon we allow line segments to
have multiple matches provided they satisfy certain
geometrical constraints and do not intersect common ras-
ters.

The algorithm employs the following heuristics to exploit
the assumption of locally continuous 3-D space:
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(1) We define a 3-D line neighbourhood, saying that
two lines L;, L, are neighbours when their distance
D(L,, L) is less than a certain threshold €. The
distance measure is not the minimum Euclidian dis-
tance between L; and L, but the minimum end
point distance. A continuous object is defined as a
set of lines that are directly or indirectly linked by
neighbourhood pairwise relationships. Continuous
objects that contain greater numbers of constituents

are preferred.
(2) Within objects, a line-segment often will have
several immediate neighbours therefore line
interpretations that possess greater numbers of 3-D

neighbours will be preferred.

In order to restrict the 3-D neighbourhood search, A 2-D
image based neighbourhood graph is computed. To each
left line L; a list of its neighbours is attached:

L » (LLLA L)

If the distance between 3-D lines is less than €, then their
projections in the images are expected to be less than a
certain limit

B
Zmin

where z.,;, is a chosen minimum depth.

In the two images neighbours are computed using the
buckets, as follows :

For each line L, look at the set of buckets attached
to L (ie that it intersects).

Given subscripts i and j of a window corresponding
to one such bucket, consider the eight neighbours of
that bucket that differ in subscript at most one.

Among the lines contained in these buckets, select
the lines L’ such that dist (L, L") < v.

3. VALIDATION OF THE MATCHES

When all the possible matches have been made and the
corresponding 3-D segments computed, for each proposed
3-D segment L the following attributes are maintained:

- match L,

- 3-D_neighbs
- object

- obsize

- nlinks

L, is the right line that is matched to L, The idea is to
enforce uniqueness constraint on the matches by eliminat-
ing ghost (incorrect) 3-D lines on the basis of the con-
tinuity of the 3-D world. Within continuous 3-D objects,
we give more support to the lines that have a great
number of neighbours.

The algorithm proceeds as follows (see schematic figure
in end of this section):
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: (iv) Stage (ii) is repeated to identify new connected

dist (L, L) <e objects that are now consistent with the uniqueness

Furthermore a pair of lines L and L’ that have the constraint (but not necessarily optimal). Discarded

same left image line primitive L; are considered to segments are not allowed to form part of these

be neighbours if: objects. Accordingly it is possible that fragmenta-

L, and L, are collinear and non overlapping: tion of the former objects into sub-objects will
where L, and L, are the right image line occur at this point.

primitives involved in the generation of L and To summarise: on the first pass, objects are com-

L’ respectively. puted, and then segmented from low-support lines.

dist(L,L) <¢g On the subsequent pass smaller objects are identified

. that satisfy within-object uniqueness.

(i) Compute_ cor!ne.cted e . (v) Enforce global uniqueness : for each L, and for each
Propagation is performed along the links of the 3-D pair (L, L") such that they belong to a different
neighbourhood graph to identify and label connected objects, choose the one that belong to the biggest
sub-graphs. The attributes of each line are set as object, ie that has the highest obsize, and eliminate
follows: the other.
= nlinks = number of other segments L it is  (vi) Remove the objects that have a obsize below thres-

connected to directly. hold for it is very probable that they are ghost
- object = number of the object/sub-graph the objects.
line belongs to.
- obsize = size of the object/sub-graph the line
belongs to ie the number of lines forming the
object. _ LINE MATCHES
Note that each object is not necessarily consistent,
It is possible (highly likely) that more than one 3-D
line segment resulting from matches of the same left The prediction of hypotheses gives raise to
or right image primitive are included in the same Eﬁ;gﬁ?&?ﬁ;ﬁ& ;nd L‘_rih ég;;i;tgg_m
Objcct, most Of them being mCOII‘eCL In t.his way it Then 3D ncighbourhood relations between
is possible for "leakage" between objects to occur lines L are set. :
(because of ghost segments that result their merger
to a single entity.
. : VALIDATION OF THE MATCHES
(iii) Enforce within-object uniqueness:

Compute 3-D neighbourhood graph:

A pair of lines L and L’ are considered to be neigh-
bours in 3-D if:
L, and L, are neighbours : where L, and L,
are the left image line primitives involved in
the generation of L and L’ respectively.

Ideally within object uniqueness would be computed
using some form of "max-clique" algorithm subject
to the constraint that matches are consistent except

I. Connected sets of neighbouring
segments are found , labelled and
their size computed.

Note that within-object uniqueness (and uniqueness
in general) is determined with respect to the left
image alone. It would be straight forward to extend
the definition of uniqueness to include the right
image, however we have found the simpler
approach to be sufficient for our purposes.

() @ ®
@ @ ®
ITIGlobal uniqueness with respect to left lines
is enforced on the basis of object size.
(2 has has been cleared from lines correspon- ]
ding to left 2D lines involved in 1,3 ...) ®

I'V.Objects whose size is too small are removed@ 4‘
for being supposedly ghost objects.

if they involve the same left or right image primi-
tive. The maximal consistent clique found would
provide a definition for a potential object.

The strategy we prefer on grounds of computational
efficiency and potential for parallel implementation
is to remove from each object/sub-graph all except
the most strongly supported amongst any set of lines
that violate the uniqueness constraint with respect to
each other. Support is determined directly in terms
of nlinks score ; the immediate neighbourhood sup-
port. Uniqueness is defined over lines L; from the
left image and allows only single matches except
where they could arise from a single 3-D line
feature in which case they are required to be col-
linear the right image.

IL.Within object uniqueness is enforced
on the basis of local support, therefore
lines are removed and objects are
recomputed (3 has split into 3 and 4).
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4. EXAMPLES OF PERFORMANCE

Examples of performance on two stereo pairs are shown
in the last figures. It must be pointed out that even with
loose constraints on local features, the way from ambigu-
ous to disambiguated stereo-data is not very long.

On Fig a & b, we show pairs of polygonal approxima-
tions, then 3 stages of the algorithm are shown, and on a
purpose of intelligibility, with two different 3-D views of
the same scene for each step.

(a;, by) All the matches (two views).

(az, by) After within-object uniqueness (two views).
(as, bs) After global uniqueness (two views).

The parameters are set to the following values :

MATCHING
- length > 4 pix (for the Boxes 512x512 and 12 pix
for the House 256x256)
- 0, = 8 deg
-K=15,c=4
VALIDATION
- &€ = 6 mm, obsize 2 3

5. CONCLUSION

As the algorithm is data-oriented, it can be implemented
in parallel without having to be redesigned. The data can
be split so that it is shared and processed separately, pro-
vided fast communication channels between processors are
available.

Enforcing the uniqueness constraint rigorously allows the
algorithm to rely only loosely on image-to-image similar-
ity criteria and therefore achieve a more robust matching.
Note that there is no constraint on the length of the seg-
ments.

Working with 3-D primitives allows us to exploit power-
ful heuristics based directly upon 3-D constraints. It is
well known that horizontal lines present fundamental
ambiguity to binocular stereo algorithms in general. How-
ever, in the algorithm above it is possible by reasoning
over the polygonal scene structure to hypothesise and ver-
ify the 3-D position of horizontal lines.

Finally, a few weaknesses (or at least characteristics) of
our approach must be underlined :

. The value of the neighbouring threshold € is scaled
on the scene (is it a drawback?).

. There is a limitation to scenes amenable to canoni-
cal representation in terms of straight-line image
primitives.
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Fig a
All matches

Fig a,

Within-object uniqueness

Fig a3

Final matches

Fig b, Fig b, Fig b,
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