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We describe the use of the Kalman filter to find optimal
fits to short sections of ellipse data and to predict
confidence envelopes in order to facilitate search for
further ellipse data. The extended Kalman filter in its
usual form is shown not to reduce the well known bias to
high curvature involved in least squares ellipse fitting.
This problem is overcome by developing a linear bias
correction for the extended Kalman filter. The estimate
covariance is used to evaluate confidence envelopes for
the fitted ellipse. Performance is shown on both real and
synthetic data.

1. INTRODUCTION

We are interested in fitting ellipses to 2D edge data as
an extension to the range of 2D primitives available in
the TINA vision system (see [1]) and as a preliminary
stage in the accurate recovery of 3D circles from stereo
edge data. Our starting assumption is that a non-straight
edge segment has been identified, and we wish to find,
relatively efficiently, the best fitting ellipse, to test
whether the fit is reasonable, and to predict a confidence
region to direct the search for continuations of the
ellipse.

This last requirement is possibly the most important
since most methods perform so well given sufficient
data that it is easy to underestimate the instability of the
problem for short curve sections. The following order of
magnitude argument illustrates this instability dramati-
cally. The overall shape of an ellipse depends on the
second derivative of curvature at a point, that is, on
fourth derivatives of position. Hence given N points of
accuracy ¢ on a small length L of curve, position meas-
urements are accurate to order cN~V2, and 4’th deriva-
tives of position are thus accurate to order oN-V2L™4, If
the density of points is p = N/L then the overall accu-
racy of the ellipse is of order op™"2L™2. Given fixed
accuracy in position, in order to achieve constant accu-
racy of the fitted ellipse for short sections the density of
points must vary inversely as the ninth power of the
length of the segment!
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There are many ellipse fitting methods available in the
literature, but most can be be ruled out for our purposes
on the following grounds: requiring data from a large
proportion of the ellipse, being non-optimal, being
biased to high curvature solutions, being based on non-
linear optimisation and hence too slow to be practical,
or being incapable of providing reliable confidence esti-
mates. For descriptions of other methods, and for
ellipse detection methods, see for example [2,3,4,5].

The extended Kalman filter is finding increasing use in
vision applications (for examples see [6]) and is the
basis of the geometrical statistics module in the TINA
system (described in [7]) It is efficient, estimates its own
error, and is applicable to contaminated sequential data.
It is thus a natural candidate for our purpose. However
experiments with the standard form of the extended Kal-
man filter showed surprisingly that it is just as biased
towards high curvature fits as naive least squares. We
have developed a bias corrected Kalman filter based on
a linearisation of the maximum likelihood principle
rather than the measurement equation which greatly
improves performance in this regard.

In §2 we present the problem of ellipse fitting in a suit-
able form for application of the Kalman filter the pro-
perties of which are described briefly in §3. In §4 the
filter is applied to ellipse fitting and in §5 we use the
covariance estimate from the Kalman filter to evaluate
the confidence envelope for the predicted ellipse. In §6
we show examples of ellipse fitting and prediction for
synthetic and real data.

2. DESCRIBING CONICS
We describe the general conic by the biquadratic equa-
tion

ax® + 2bxy + cy* + 2dx + 2ey + f = 0.

Since the trace a + ¢ can never be zero for an ellipse
the arbitrary scale factor can be removed by the normal-
isation

a+c=1

(with this normalisation rectangular hyperbolae cannot
be represented, the more obvious scaling f=1 would
exclude ellipses which pass through the origin). All
ellipses can then be described by the 5-vector

X= (a, b’ dv etf)t
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which we wish to estimate given observations
J’; = (%, y)'

related to their true values by
Yi =Yi+ Vi

where the noise v; has expected value zero and covari-
ance

2 0
Covlv] =R; = 0 32

For each point the equation of the conic becomes a
non-linear constraint

F(x,y)=0.
which we shall impose using the extended Kalman filter.

3. THE KALMAN FILTER

The linear, extended and bias corrected Kalman filters
for measurement constraints such as that above are
described briefly below (for more details on the Kalman
filter see [8], for more details on correcting linearisation
bias see [9]).

We use the fact that the minimum of the quadratic form

(= hi (x-x)))’

00 = (x-x0)' S5l x—x0) + 5

2
i=1 g;
can be calculated by iterating the Kalman filter
(5= B it — X))
Xi =X — G- WX = X)) 50 1
y e of + hiS;_ih;
S,'_ h; S; ll.' t
S,= S - (8i-1hy) (Si1hy)
o7 + hiSiih;

p times starting with the initial values x,, So.

This corresponds to finding the maximum likelihood
estimate of a vector x given prior knowledge that x has
expected value x, and covariance §, and given the
values z; of a series of measurements

zi=hi(x;—x))+u; E[u]=0 Varly]=o?’
The normalised residual
(2 — b (X = X)))?
o7 + hiS;h;
is a %2 variable on one degree of freedom.

This can be generalised to the case of a series of p
measurements y; of vectors y; related to x by a non-
linear scalar constraint

F(x,y)=0.
where the measurement noise is Gaussian with
Ely,-y;1=0 Covly;- y;1=R;

if we linearise the c_onstraim about estimates xf of x and
the measurements y;

F + (V4F) (x - %) + (V,F) Gi - ) = 0.

N.{aki'ng the substitutions (all function values are taken at
Xi, ¥ i')

€;
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Z,'="'F
hi:VxF

puts this in the form of the linear measurement equation
above with noise term

u; = (VyF)(YE = Y:)
having zero expectation and variance
of = Var(u] = (V,F) R; (V,F)'

The Kalman filter for the linearised measurement con-
straint is called the extended Kalman filter.

An alternative derivation of the linearised filter begins
by suitably approximating the maximum likelihood prin-
ciple. The maximum likelihood estimate for x (with
prior knowledge) minimises

0=&-%) 5 x-x)+ 3 G- ¥R i - ¥))
=1

over all x, y; subject to the measurement constraints.
We will find the minimum in the Levenberg-Marquadt
approximation that the d4; are small, and so can be
approximated to linear order.

It is clear that the minima over y; can be calculated
independently for each term

d?= (v - y)) 'R i — ¥}
subject to the single constraint
Fx,y)=0

At the minimum d; is the perpendicular distance from
the point y; to the surface F = 0 in y space. For y; close
to the surface d; can be calculated to linearised order as

d; = F(x, y;)/o/x)

where we have defined
61 = ((VyF e, y0) R (P, v

If we expand both numerator and denominator to linear
order the estimate of Q(x) is

~ . 2, (zi—hi(x-x))

Q)= =X S =30 + & Y o - 507
With the same substitutions as above. The minimum
principle for the extended Kalman filter is thus the result
of expanding the numerator of d; to linear order in
x — x; but ignoring the linear correction in the denomi-
nator. It fails to take into account the change in weight
of a given measurement as the constraint parameters
change. The result in our ellipse fitting application is
that the fitted ellipse tries to locate areas of high curva-
ture on the fitted segment artificially reducing Q, as will
be seen in the examples.

The solution is to retain the linear order terms in the
denominator, luckily this can be done without changing
the form of @, in fact to linear order

o~ B
0 = (x ~ %) 5t (x — x4 § B =~ %)

=1 i

where



Figure 1 : Correction of bias to high curvature

(a) Extended Kalman Filter (b) Bias Corrected Kalman Filter

(¢) Predicted Confidence Surface
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Figure 2 : Instability of prediction from short sections

(a) =05 (b) £=0.1

(c) Z=0.02
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Figure 3 : Examples using real data

(a) Disc & Lens Caps (b) Widgets

(c) Mugs
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- Z;

h; =h; + 5 Vxoi(x)
the correction is thus made by adding a term to the
plant vector of the Kalman filter, this terms depends on
an x-derivative of ¢ and thus on the cross second
derivative V,V,F of the measurement constraint. We
will call this the bias corrected Kalman filter.

4. APPLYING THE KALMAN FILTER

An initial estimate of the parameters x, of the best fit
conic to a point string is obtained by calculating the
conic passing exactly through five well spaced points of
the string using the four-line method (if this initial conic
is not an ellipse convergence is more likely if a three
point circle fit is chosen). This initial estimate is ren-
dered infinitely uncertain by setting the initial covari-
ance S, to be diagonal and large.

The extended Kalman filter described above is then
applied sequentially to impose the measurement con-
straint at each point of the string with the substitutions

z = —(ax? + 2bxy + (1-a)y? + 2dx + 2ey + f = 0)
h=V,F=02-y 2y 2x 2y 1)
o = 4Z%((ax+by+d)* + (bx+cy+e)?)

The fitting process is iterated by using the result of this
process as new initial estimate until changes in ellipse
parameters are less than their expected error.

Note that a robust implementation of the filter such as
the Bierman U-D factorised form [10] is essential to
avoid numerical problems.

5. CALCULATING CONFIDENCE ENVELOPES

Once the best fit ellipse has been found, the information
about the accuracy of the fit is contained in the covari-
ance matrix S. The test that a general point (x, y) lies
on the ellipse is given by

2
Z
o
h'Sh
so that confidence regions are bounded by the fourth
order curve

(ax? + 2bxy + cy* + 2dx + 2ey + N2 = x> h'Sh =0

(for an ellipse this has two branches giving inner and
outer confidence boundaries). It can be shown that this
curve is also the envelope of all ellipses with a residual
deviation from the estimated ellipse less than %> (now
interpreted on 5 degrees of freedom).

Plotting the confidence values in the plane as grey level
values gives a visual realisation of the fitting accuracy.
The intersection of the 95% confidence boundaries for
the fitted ellipse with a given line can be found by solv-
ing a quartic. The boundaries can can thus be found
efficiently by plotting their intersection with lines
through the ellipse centre.

on 1df

6. EXAMPLES
All the examples show a notional 256x256 image.

Figures (1a,b,c) were constructed as an extreme example
of the bias associated with using the extended Kalman
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filter. The data consists of 320 points generated on a
short section of an exact ellipse to which Gaussian
errors of standard deviation 0.2 pixels have been added.
Such data sets were generated repeatedly, and the fitting
method applied, a sample of 20 fits was taken to show
the performance of each method. To allow fair com-
parison all methods were given the true ellipse as start-
ing approximation. It shows the true ellipse the family
of fitted ellipses, and the total data set overlayed on the
ellipse. Figure (1a) uses the extended Kalman filter,
showing the very clear bias to high curvature. Figure
(1b) uses the bias corrected filter, there is no obvious
bias and the sample variation agrees well with the
predicted confidence surface shown in Figure (1c). Fig-
ures (2a,b,c) show very clearly the instability of the
ellipse fitting problem. Confidence surfaces are given
for 5-point fits to a short section of an ellipse at three
different noise levels Z = 0.5, 0.1, 0.02 pixels.

Figures (3a,b,c) shows some examples of predicted
ellipses and confidence regions for real data. The fitted
string is overlayed on the fitted ellipse (middle curve)
and the inner and outer 95% confidence bounds are
shown,
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