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The objective of this paper is to investigate a number of
circle detection methods which are based on variations
of the Hough Transform. The methods considered in-
clude the standard Hough Transform, the Fast Hough
Transform of Li et al, two space saving approaches which
are bused on those devised by Gerig and Klein and a two-
stage method. We experimentally compare the perfor-
mance of the methods and illustrate properties such as
accuracy, reliability, computational efficiency and stor-
age requirements.

In recent years, several methods of circle finding based
on the Hough Transform (HT) have been proposed [1,2]
as well as some general techniques for fast implementa-
tion of the HT [3,4]. Invariably these methods claim to
improve efficiency, storage or reliability though in most
cases the comparisons made with other techniques are
superficial. We feel that this is about the right time to
put a number of these algorithms together and examine
their properties in more detail. The study is experi-
mental and we consider both real and synthetic images.
Our results show that more sophisticated variations of
the HT method do not necessarily out-perform straight-
forward approaches.

The paper is organised as follows. In the next section we
introduce the circle finding problem and the basic idea
underlying the HT. This is followed by a brief descrip-
tion of each of the five HT based methods considered in
our study. The experimental evaluation of each method
is then given and the final section presents the conclu-
sions of our work.

CIRCLE FINDING USING THE HT
If a circle in the image is described as

(1)

where (a, 6) are the coordinate of the circle center and
r is its radius, then an arbitrary edge point (i,,y,) will
be transformed into a right circular cone in the (a, 6, r)
parameter space [5]. If all the image points lie on a circle
then the cones will intersect at a single point in (a, 6, r)
corresponding to the parameters of the circle. Kimme
et al [6] give probably the first known application of the
Hough Transform to detecting circles in real images. In

their work, they have made use of the direction of the
gradient at each edge point. The centre of a circle must
lie on the normal at the edge point. As a result instead
of incrementing the whole circular cone, only segments
of the cone need be incremented. The size the region
which is incremented depends on the accuracy of the
edge direction estimation.

An important part of the complete HT process is peak
detection. An extremely useful technique which we have
found eases the peak finding problem considerably is the
post-processing method proposed by Gerig and Klein
[1]. It consists of a second daa pass which takes each
edge point and identifies the maximum value in the ac-
cumulator array out of all parameter values voted for by
the point. The edge point is labelled with this location.
In all the methods considered, this technique is used to
detect the final peaks. We refer the reader to [7,10] for
details.

THE STANDARD HT
The Standard Hough Transform (SHT) in this study
follows the basic idea outlined in the previous section.
A 3-D accumulator array is employed and edge direc-
tion information is used to limit voting to a section of
the cone. In an ideal situation, the centre of the circle
must lie on a line oriented normal to the edge direction.
Therefore we only have to move along the normal of ev-
ery edge point to find the possible locations of centers.
The distance between each edge point and the estimated
center is a candidate for radius of the corresponding cir-
cle. However, in practice, the edge direction is usually
estimated inaccurately. As a result, the detection of
the true local maximum in the accumulator array could
be difficult if this simple accumulation strategy is used.
If the direction error is known to be within a range of
±A(^, then we may say that the center of the circle for
the point (x<,y,) is within a certain region. This region
diverges as the radius increases. To increment this re-
gion exactly in the accumulator is very difficult. It can
be incremented approximately by incrementing blocks
of cells along the normal line, see [10] for details.

THE GERIG AND KLEIN HT
One of the problems with the standard Hough Trans-
form is the storage space required if the range of circle
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radii is large. Instead of using a three dimensional ac-
cumulator array for the Hough space, Gerig and Klein
[1] use 3 different two dimensional accumulator arrays.
Here, we call the method Gerig and Klein Hough Trans-
form (GKHT). Two of the arrays are used for center
location and one for the corresponding radius. In this
case, the storage is significantly smaller than that re-
quired for the SHT. The structure of the algorithm for
detecting circles is very simple. Since the locus of pa-
rameters forms a right circular cones in the Hough space,
then given a value for the radius as r = ro, the locus
of (a, b) is just a circle of radius ro in the (a, b) space.
Therefore it is sufficient to increment all the boundary
points of such a circle for each value of radius. The
method proposed by Gerig and Klein does not use edge
direction. There is a significant saving in storage space
for this procedure. However, because only a single ra-
dius is retained for each centre it is not possible to de-
tect concentric circles. Application of the method can
be found in [l].

THE GKHT WITH EDGE DIRECTION
As the GKHT method does not use edge direction, a
complete circle has to be incremented at every value
of radius for each edge point. This is rather computa-
tionally demanding. In order to improve the efficiency,
we have modified the GKHT to incorporate edge direc-
tion information. The modified approach is called Gerig
Hough Transform with gradient (GHTG). Only a sector
of the circle dependent on the edge direction need to be
incremented. In order to do this efficiently, we have ap-
proximated the sector by a square [10]. The structure
of the method is identical to the GKHT except that in
the accumulation and post-processing only the smaller
region of the complete circle is considered.

THE 2-1 HOUGH TRANSFORM
Another way to reduce the storage requirement when
edge direction is available is to decompose the circle
finding problem into two stages. This approach has been
used in [2,3]. Here, we call it the 2-1 Hough Transform
(21HT). Since the centre of a circle must lie on the nor-
mal of each point on the circle, the common intersection
point of these normals is actually the centre of the cir-
cle. A two dimensional array is required to accumulate
votes along the normal of each edge point. To identify
the radius of circles, the distance of each point from a
candidate centre is calculated and a radius histogram
is produced. The detection of false peaks in the centre
finding stage can lead to significant computational cost
for the second stage, especially if a low threshold is used
to detect small circles. The storage space required for
the method is quite small, since only a single 2-D accu-
mulator and a 1-D histogram are necessary. Application
of this method can be found in [2].

THE FAST HOUGH TRANSFORM
Li et al [4] suggest using a multi-dimensional
quadtree structure for accumulating the HT method.
The method is called the Fast Hough Transform (FHT).
Li has suggested that the FHT should require less stor-
age and be more computationally efficient than the SHT.
The FHT is based on the use of a hyperplane formu-
lation, i.e the voting surface in parameter space is a
hyperplane. It is possible to develop a hyperplane for-
mulation for the circle finding problem [8]. However
from our experimental results [10] this approach is not
very suitable for finding circles due to the problem of
non-linearity among parameters in the hyperplane for-
mulation. In order to avoid this problem and increase
the efficiency of the FHT, we use a different formula-
tion which incorporates edge direction information. The
modified approach is called the modified Fast Hough
Transform (MFHT). The method makes U3e of the fact
that the locus of the parameters (a, 6, r) at an edge point
(z», y,) with normal direction <f>{ in the three dimensional
Hough space consists of two orthogonal straight lines
pointing outward from the point (a:,-,t/j,O). To deter-
mine whether a hypercube has been intersected by one
of these two lines, we compare the perpendicular dis-
tance from the center of the hypercube to the lines with
the diagonal length of the hypercube. If the former is
shorter, the hypercube will receive one vote. Unlike the
original FHT, there is no incremental updating for the
intersection test.

In order to improve the efficiency of the algorithm, we
have developed a scheme to choose a suitable thresh-
old value adaptively based on the range of radius being
searched and at the same time, reduce the searching
range of radius [10]. The results presented are based on
this strategy.

EXPERIMENTAL COMPARISON
There are many criteria which can be considered in any
comparison of algorithms but in our study the most im-
portant points relate to the accuracy, robustness, com-
putational complexity and storage. The accuracy is
measured by comparing the absolute errors of the es-
timated radii and center coordinates to the true values
of circles in synthetic images. We present a typical ex-
ample using an image consisting of 19 randomly gener-
ated circles. To test the detection capabilities of each
algorithm, a real image consisting of about 76 circles
of various radii, counted subjectively, is examined. The
number of missing and false circles are counted for each
algorithm. To estimate computational efficiency we use
the time taken to run each algorithm on our /iVAX-2
computer. We realise that as a measure of efficiency this
is not necessarily of general significance. However all al-
gorithms, except the Fast Hough Transform, are very
similar and therefore at least in a coarse sense we would
expect the conclusions regarding efficiency to hold. The
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major time consumption for each algorithm occurs for
transform accumulation and the implementation of the
Gerig and Klein post-processing. The 2 stage method
also expends a significant time for the radius histogram
step. The storage requirements for each method are
dominated by the accumulator array (s). Note that all
the algorithms were coded in PASCAL.

Figures 1 and 2 show the edges of the synthetic and real
images. The edge points in each image are identified
using a method based on the Canny edge detector [9]
followed by binary thinning of the resultant thresholded
edge map. The edge direction of the synthetic image
is smeared by a Uniform distributed noise in the range
[—5,5]. This smearing does not affect the performance
of the GKHT method as edge direction is not used. For
the other methods, three different error bounds, 0°, 5°
and 10°, are assumed for edge direction accuracy. Fig-
ure 3 shows the corresponding means of the absolute
error of the three parameters. It is interesting to note
that the GKHT method achieved a zero error for the ra-
dius parameter without using the gradient. The 21HT
method is very sensitive to the assumption of value of
the error bound. It achieves very small errors for the
parameters at the error bound of 5°. The result for the
MFHT at the error bound of 0° is very good but the
result at the 10° is not available due to the large stor-
age requirement. The means of absolute error of the
SHT method are generally larger than those from other
methods. The result of the GHTG is good in most cases
and the means remain stable as the assumption of the
error bound increases. It is difficult to choose the best
method based on this single example. However, based
on the results from other experiments [10], the 21HT
and GHTG methods seem to be more accurate than the
others.

Table 1 shows for the synthetic image the number of
missing and false circles found by each algorithm at dif-
ferent assumed edge direction error bounds. The best
performance in this case is obtained with the GHTG
method which only missed 2 and 1 circles at the error
bounds of 0° and 5° respectively and detected all the 19
circles using the error bound of 10°, see figure 4.

We found that using the 2 stage method, errors in the
first stage caused problems in the second stage his-
togram. It can be shown that if the magnitude of the
centre error is greater than the histogram cell width
a single circle will produce two peaks in the radial
histogram [10]. The peaks are symmetrically located
around the true radius and the distance between them
depends on the centre error. This makes concentric cir-
cles difficult to distinguish from double peaks due to
centre errors.

The most striking observation concerning the MFHT is
that it exhausts the available storage of the VAX ma-
chine in the case of 10° error bound and therefore the

result is not available. This problem relates to the large
number of phantom peaks which the MFHT investigates
before discovering the correct ones. The algorithm per-
forms reasonably well in terms of efficiency, accuracy
and reliability using the other error bounds.

Figure 5 shows the CPU time for the algorithms. In this
case, the performance of the 21HT, GHTG and SHT are
very close to each other. As expected the GKHT which
does not use gradient direction takes significantly longer
than GHTG.

The comparative study would not be complete without
applying the algorithms to real images. Figure 6 gives
the running time of the algorithms on the real image
shown in figure 2. The error bound is assumed to be
±5° for the MFHT method (because of storage problem
mentioned previously) and ±10° for the 21HT, GHTG
and SHT methods. The time taken by the algorithms
21HT, GHTG and SHT are very close to each other.
However on counting the missing and false circles, as
shown in table 2, the GHTG out-performs all the other
methods with only 3 circles missing out of 76. There
are, however, 10 false circles detected by the algorithm.
All of them are very small circles with radius 1 or 2.
These false circles are found from badly detected edge
points which are in fact true circles with very low grey
level in the original image. Figure 7 shows the result of
circle finding using the GHTG method.

In most methods, the storage requirements depend di-
rectly on the parameter ranges and the quantization of
each parameter axis. We have used 2562 images and
only detect circle centres which lie inside the image,
hence a and 6 are within (0,256). The radius was lim-
ited to lie between (1,35). Each axis was divided into 1
unit cells. Considering the storage requirements of each
of the 5 algorithms, as shown in table 3 we see that the
21HT method has a clear advantage over the others.
The GKHT and GHTG are the second best. The stor-
age requirement of the MFHT is rather unpredictable.
It will depend on the complexity of the image, choice of
threshold value and the error bound assumption.

CONCLUSIONS
The results of our study indicate that both the GKHT
and MFHT experience severe difficulties if applied to
complex images. The main problem of the GKHT is the
unreliability and low efficiency due to the fact that edge
direction information is not incorporated in the method.
The MFHT suffers from the unpredictable storage and
computational requirement, and has the most compli-
cated programming structure in comparison with the
other methods. Nevertheless, both methods may still
be useful if they are applied to simple images with very
low noise.

It has been shown that the performance of the 21HT,
GHTG and SHT are very close to each other. The main
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drawback for the SHT is the large storage requirement
for images consisting of circles of different sizes. Al-
though the GHTG is restricted to non-concentric cir-
cles, we have found, from other experimental results [10],
that the GHTG generally peforms better than the 21HT
method in the sense of robustness. This is due to the
fact that the 21HT is a 2 stage method and any error
occurring in the first stage of center finding will cause
difficulties in the peak finding of the second radius find-
ing stage.
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Figure 1. The edge image of the synthetic Figure 2. The edge image of the real image,
image.
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error bound of 10°.

Figure 5. The CPU time of each algorithm

on the synthetic image.
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Figure 7. The resultant circles of the real

image detected by the GHTG method.
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3

10°
3

1

0

2

-

0°

0

0

0

0

0

False

5°

0

0

0

0

0

10°

0

1

0

0

-

Method

GKHT

21HT

GHTG

SHT

MFHT

Missing

57

41

3

35

12

False

16

2

10

2

6

Table 1. The number of missing and false

cirlces in the synthetic image detected by

each method at different error bounds.

Table 2. The number of missing and false

circles in the real image detected by

by each method.

Method
Storage

GKHT
197K

21HT

131K

GHTG
197K

SHT
4588K

MFHT
-

Table 3. The storage requirement for each algorithm.
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