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A new algorithm for the Hough transform
is presented. It uses information available in the
distribution of image points to calculate the pa-
rameters associated with combinations of the min-
imum number of points necessary to define an in-
stance of the shape under detection. The method
requires only one dimensional accumulation of evi-
dence to determine the parameters associated with
a given shape. Using the algorithm, the Hough
transform of sparse images is more efficiently cal-
culated. Dense images may be segmented and sim-
ilarly processed. The method also provides a feed-
back mechanism between image and transform space
whereby contiguity of feature points and endpoints
of curves may be determined.

The Hough transform[l], [2] is a powerful
tool in shape analysis. It is used to extract global
features from shapes and gives good results even in
the presence of noise or occlusion. While the the-
oretical potential of parametric transform meth-
ods has been demonstrated they have made little
impact on large scale industrial applications be-
cause of supposed excessive storage requirements
and computational complexity[3] The development
of fast, efficient implementations of parametric trans-
formation methods of shape detection has accord-
ingly received much attention in the recent lit-
erature [4], [5], [6], [3], [7], [8]. An up-to-date
and comprehensive review of the use of the Hough
transform is given by Illingworth and Kittler[9].

Previous suggested approaches may be di-
vided into two categories. The first seeks to reduce
the computational load by using evidence from the
image to reduce the generation of evidence group-
ings of points. Such methods are:

1. Using edge direction information as an indi-
cation of the parameter range to be consid-
ered^], [10]. Using this approach requires
an accurate estimation of the 6 range from
the edge direction data. A large mask needs
to be used in the edge detection stage, which
merely shifts the computational burden.
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2. For straight line detection, a local opera-
tor may be applied which exploits the con-
straint that at least two points are required
to define a line[7]. This algorithm does suc-
ceed in reducing the memory allocation re-
quirements. However, because of the com-
plexity of its implementation it does not of-
fer a significant reduction in computational
load and the net result of using a local op-
erator is a reduction in resolution.

3. A further method for straight line detec-
tion preprocesses the edge data to form a
list whose elements are ordered on contigu-
ity and form the equivalent of a chain coded
representation of the edge image data[8]. A
variable sized sliding window is then used in
conjunction with this list to generate point
pairs which are mapped into the parameter
space. Again the method simply shifts the
computational burden to the preprocessing
stage and offers no reduction in memory al-
location. A significant disadvantage of the
method is that it inherits all of the weak-
nesses inherent in the chain coding process.

The second class of methods involves absolute or
iterative reductions in resolution of either the trans-
form or the image space.

4. Segmenting the image. In [11] segmenta-
tion of the image is considered. Segments
of the same line contribute separately to the
same entry in the transform space. But still
all possible values of the dependent param-
eter, are calculated. Segmenting the image
in this case is equivalent to a reduction in
resolution, which may not be acceptable.

5. Using an adaptive method[4], [5], [6], in
which a coarse resolution in transform space
is initially made, advancing to a finer reso-
lution around candidate peaks. It is an iter-
ative process, with the results of each stage
depending on results obtained in the pre-
vious one. This method may work well for
simple images, but for images with multiple
instances of curves, a coarse search in the
transform space may not detect all maxima,
thus failing to detect them in the iterations
that follow.

Evaluation of the information generated in
the transform space may present difficulties. Prob-
lems associated with the detection of maxima in
the transform space may be partially solved by the
use of matched filtering techniques to detect those
maxima[l2], [13]. However, a major shortcoming
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of the technique remains in that all information
about feature points contributing to a maxima in
the transform space is lost in the transformation
process. It is therefore not possible to determine
either contiguity of feature points nor end points
of curves. Gerig[14] attempts to solve these prob-
lems, in the case of circle detection, using a tech-
nique which maps information from the parameter
space back to the image space. In this way each
image point has associated with it a most prob-
able parametrisation. A second transformation is
performed where, for each image point, only the
cell in parameter space associated with the most
probable parametrisation of that image point is in-
cremented. The technique works well in that it is a
reliable strategy for interpreting the accumulator
space. It is however still computationally complex
and offers no reduction in memory allocation.

The proposed method seeks both to cut sig-
nificantly the computational burden involved in
the implementation of the transform, to provide an
efficient feedback mechanism linking the accumu-
lated boundary point evidence and the contribut-
ing boundary point data and to facilitate the de-
tection of maxima.

1 . Combinatorial Hough transform

An expression for the Generalized Hough
Transform, GHT, may be written in the form sug-
gested by Deans[15]

F(x,y)6(p-C(x,y;Z))dxdy (1)

where F(x, y) is an arbitrary generalized function[16]
defined on the xy plane D. The argument of the
delta function defines some family of curves in the
xy plane parametrized by the scalar p and the com-
ponents 6>6>---fn of the vector f. If, F(x,y),
represents a binary image the integral of equation
1 will have a value of 1 when the argument of the
delta function evaluates to zero. The evaluation of
the argument, in its discrete form,

Pj = C{xi,yi\Zj)

is used to calculate the standard GHT. The i, j
subscripts refer to ordered pairs in the image and
the transform space respectively. For every point,
(£i)2/t), of the image, i is fixed and the values pj
are calculated using combinations of stepwise in-
crements of the components of £j. Each point,
(Pj,£j), in the transform space will refer to a possi-
ble curve in image space which passes through the
point (xi,yi). The SHT therefore provides a great

redundancy of information concerning the image.
This is because each image point is treated inde-
pendently.

The present technique proposes that each
image point be tested for the most probable, as
opposed to all possible, membership of curves. If,
when the image is scanned for candidate feature
points, a list of those feature points is maintained,
then probable membership of curves may be tested
by calculating the parameters associated with com-
binations of the minimum number of points nec-
essary to define an instance of the shape under
detectibn[l7].

It is clear that where n parameters are as-
sociated with the shape under detection then a
minimum of n points are required to test the mem-
bership of a curve of any given n — 1 points with
the image point under consideration. For an image
containing m points, to test each point in this way
would require C£ = /^~\7^r computation cycles.
If the number of feature points, m, is large enough,
the number of computations required far exceeds
those required when using a standard GHT algo-
rithm. This problem may be resolved by applying
the technique dynamically in a manner appropriate
to the curve under detection.

1.1 Dynamic Combinatorial Hough Transform for
Straight line detection

The simplest possible combination of image
points is that of two point colinearities. For two
such co-linear points, (x\,yi)y (x2,2/2)1 the equa-
tion of the line joining them is given by:

p — x cos 9 — y sin 9 (2)

where:

\ -
The Dynamic Combinatorial Hough Transform, DCHT
proposes that the value of 9 be calculated for each
two-point colinearity involving the first point, (a*!, t/i),
and the remaining points, (a;t-,y,:), on the list of
image points. These values are then accumulated
in a 9 histogram. If m of the points in the list
are co-linear with the first point, it results in a
peak of value m at the 9 value of this line in the 9
histogram. After such a peak has been detected,
the value of r for this line may be calculated us-
ing the {x,y) coordinates of the first point. It can
be reasonably assumed that the m co-linear points
do not reside on another line. Thus, they may be
removed from the list, and the next pass of the
algorithm handles a shortened list. In each of the
following passes the first point in the shorted list
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is combined with all other points, and a new 6 his-
togram is generated. Points contributing to peaks
are successively deleted from the list. Each set
of points may be tested for contiguity and the end
points of line segments determined. The procedure
continues till all points in the list are deleted.

1.2 The Dynamic Combinatorial Hough Trans-
form for Circle detection

In general, the Hough technique requires
that a new parametric transform space be used
with respect to each new shape, the dimension-
ality of the transform space being a function of
the number of parameters associated with a par-
ticular shape. Using the Dynamic Combinatorial
Hough Transform this massive memory require-
ment may be avoided and the computational load
significantly decreased.

Circles may be successively detected by cal-
culating the parameters associated with the circle
which passes through combinations of three non-
colinear points such that the first image point,
(^liJ/i), in each combination is fixed. The calcu-
lated parameters are accumulated in one dimen-
sional histograms. Peaks in the histograms will
indicate the parameters associated with the most
probable instance of the circle in image space of
which the point, (2:1,2/1), is a member.

To calculate the parameters of the circle,
the present approach uses the following property,
that the perpendicular bisector of a chord passes
through the center of the circle. For a triplet of
edge points, (2:1,2/1), (2:2,2/2), (2:3,2/3), on a circle,
the perpendicular bisectors of the two chords gen-
erated by these three points will intersect at the
center of the circle. For example, the equation of
the perpendicular bisector of the chord formed by
the colinearity of the points (2:1,2/1) and (2:2,2/2)
may be expressed in the form:

y - ybl = nnix - xbl) (4)

where xbl = ( a '+ a ;) and ybl = (y '*y;) are the
co-ordinates of the foot of the perpendicular and
its orientation is given by:

- 2:2
im = tan (5)

V 2/1 - 2/2 /
The center co-ordinates, (xc,yc), and the radius,
r, of the circle on which all three points reside are
given by:

b, +(2/fc! - Vb2)

(6)He - J/bj + mi(xc - xbl)

r = ((* - xcf - (y - ycf))>

The calculated center co-ordinates and radius are
accumulated in three one dimensional histograms.
Maximum values in the three histograms indicate
the parameters of the circle of which the point
ix\, V\) is most probably a member. Any points re-
siding on this circle may then be removed and the
next pass of the algorithm handles a shortened list
of feature points.

2 . Implementation and Illustrations

Fig l(a) shows a 256 x 256 test image of
an hexagonal nut. A Laplacian edge detector is
applied to the test image. Fig l(b) shows the re-
sulting binarized edge image. To reduce the com-
putational load, the edge image is segmented into
sixteen sub-images, each processed independently.

Following the method outlined in section
1.1, the co-ordinates of the edge points in a seg-
ment are listed in the order of their appearance. A
point on the list is then fixed. The fixed point is
paired with all other points in that segment pro-
vided that the distances between the points are
large enough to minimize inaccuracies in grid rep-
resentation.

A 0 histogram is generated using equation
(3) and the peak extracted. Using equation (2) p
is calculated for the extracted value of 6. Points
which contribute to this value of (p, 6) are removed
from the list and the next pass of the algorithm
handles a shortened list. The process continues
until all points contributing to straight line seg-
ments have been removed from the list and from
the edge image, See Fig l(c).

Circle detection proceeds using this reduced
edge image, Fig l(c). In this second stage the same
segments are used. One image point is fixed and
used in combinatorial variations of that point and
two other points from the list following it, provided
that such sets of points are not co-linear. The cir-
cle parameters are calculated as outlined in section
1.2. Three histograms are generated for xc, yc and
r, the circle parameters. Each histogram exhibits
a peak, these are detected and the points which
have contributed to that particular circle are re-
moved from the list.

If the choice of first image point is good
then the values accumulated in the histograms con-
verge to single maximum values in the first iter-
ations of this particular stage of the algorithm.
Should it happen that the first point is a poor
choice, i.e. a spurious point not located on a circle,
then multiple peaks will occur in the histograms.
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Such multiple peaks begin to develop in the first
iterations of the algorithm. Thus a check can be
made relatively early in the computation cycle and
where multiple local maxima are detected then this
pass of the algorithm may be abandoned at little
computational cost and a new first point chosen.

Extraneous associations of points which re-
side on different line segments, or on a line and a
circle, occur, but their incidence is much reduced
by segmentation, and by the removal of straight
line segments from the image before the algorithm
for circle detection is applied.

Once all segments have been processed, a
list of parameters of straight lines and circles in the
image is obtained, and can be used to reconstruct
the image (fig. Id).

3 . Conclusion

A new algorithm, the Dynamic Combinato-
rial Hough Transform, DCHT, has been presented.
It uses information present in the location of the
feature points to reduce the generation of evidence
in the transformation process. The DCHT offers
significant improvements to previously suggested
implementations of the Hough transform. The al-
gorithm is computationally less intensive. It is also
much more efficient in memory utilization. Rather
than using an accumulator array whose dimension,
7i, corresponds to the number of parameters un-
der detection, it requires only n one dimensional
vectors in which to accumulate the results of the
transformation. The length of the vectors is cho-
sen with respect to the required resolution of the
detection process.

Further computational savings may be made
by segmenting the image. In addition, if the cal-
culated parameters are not within the range of
possibilities suggested by the shape under detec-
tion, this pass of the algorithm may be abandoned.
Such a strategy will deal with membership of ex-
traneous curves accidentally generated.

A further advantage of using the algorithm
is that peak detection is one dimensional and the
method provides a feedback mechanism whereby
the end points of curves may be detected.
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(a) (b)

(c) (d)

Fig. 1 Applying the DCHT algorithm to an image :
(a) the original image (b) the edge image
(c) the edge image after the removal of straight lines
(d) the reconstruction of straight lines and circles in

the image.
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