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Recent work is summarised that characlerises determin-
istically and statistically the performance of morphologi-
cal and rank order filters. We propose adaptively filtering
noise that is asymmetric by one of the biased morpho-
logical filters co and oc whose average is known to be an
unbiased estimator of a signal in symmelric noise. Signif-
icant differences in filtered images are determined using a
nonparamelric statistical test. Preliminary results illus-
trating the theory and applying it to tezture segmentation
are presented.

This paper arises from a recent study of the noise suppres-
sion characteristics of morphological filters [1]. Noise sup-
pression filters based on the morphological opening and
closing transformations have been used for a number of
years for pre-detection smoothing in industrial vision [2]
and for a variety of medical applications. From a practical
viewpoint, morphological filters are good at suppressing
impulse noise, and are edge-preserving so do not suppress
high frequencies. Since they preserve structure, they per-
form better than rank-order filters, such as the median,
on two-dimensional image structures. Morphological fil-
ters can be efficiently implemented relative to mean and
median filters: for example, all of the filters discussed in
this paper have been implemented on our Laboratory’s
Datacube image processing system [4]. Several examples
of the application of morphological filters are presented
in [5,1]. Figure 1 shows a typical result of filtering a
range image with a sequence of successively larger co-
moc operators. The comoc filter is the average of the
open-closing filter oc and the clos-opening filter co, that
is comoe = (co+ oc¢)/2. The iterated comoc performs sig-
nificantly better than: edge-preserving smoothness, weak
membrane, and median filters.

The application of morphological filters to image process-
ing has for too long preceded the development of theory
(the same comment applies to early work in other areas of
vision research such as edge detection). As morphological
and linear filters are based on quite different mathemati-
cal theories it has proven difficult to relate precisely their
performance. Recently, however, there has been some
considerable progress in the development of the theory,
specifically concerning two aspects of morphological fil-
tering:

e deterministic analysis of performance; and
e the statistical properties of those filters.

First, Maragos has studied the clos-opening co and open-
closing oc morphological filters. The co filter over-
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estimates a one-dimensional signal, while the oc filter un-
derestimates it, and in both cases they trim sharp peaks
and valleys. He has shown that co and oc transform sig-
nals in a similar manner to the median and he derived
relationships between rank-order, linear and some mor-
phological filters [6,7]. The value of these studies and
those in [8], is that they have furthered our understand-
ing of the shape properties of morphological filters (signals
invariant to filters of different geometry and size).

Recently, Arce and Stevenson studied the statistical prop-
erties of morphological filters [9]. More precisely, they
derived the output cumulative pdf that results from ap-
plying the co filter to a signal whose assumed input cumu-
lative pdf is F'(t), where t is a (threshold) signal level.
[1] describes the relevant mathematics, and derives several
new results for the cases where FT(f) is uniform, Gaus-
sian, and Rayleigh (for example, the assumed noise model
for the magnitude of an image gradient [10].)

Taken altogether, the results of Maragos, Arce, and No-
ble quantify the noise suppression performance of filters
on a constant signal corrupted with noise from the cor-
responding distribution. The take-home messages can be
succinctly stated:

1. Morphological filters smooth a noise-corrupted con-
stant signal less than the median which in turn is less
good than linear averaging for Gaussian noise. This
underlies the structure preserving properties of the
morphological filters relative to median and mean.

. Both median and morphological filters are good for
heavy-tailed noise distributions and the suppression
of outliers. They remove ‘impulses’ of extent less
than n where the filter window size is 2n+1. This
implies that they are good at eliminating point im-
pulses (salt-and-pepper noise) and missing line noise.
By contrast, a moving average filter performs badly
on this task.

. The application of a single morphological filter, such
as co and oc, introduces a bias with respect to the
median. For symmetric input noise, the comoc is an
unbiased signal estimator.

. Morphological filters differ from the median in that
reapplication of a morphological filter produces no
further change in the signal structure. Morpholog-
ical and median filters preserve edges and, suitably
chosen, can preserve line structure [9]. In particular,
“constant sets” are preserved while “impulse sets”
are transformed into constant sets.
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5. Rank-order filters, closely related to morphological
filters, play an analogous role for the mean abso-
lute error criterion that linear filters do for the mean
square error criterion [11]. In particular, the median
filter gives the minimum mean absolute error esti-
mate of a constant signal corrupted by zero mean
symmetric noise.

For our present purposes, the principal implication of
these properties is that it suggests that morphological fil-
ters should be well suited for applications which can ex-
ploit the trade off between good noise suppression (prop-
erties 1,2,3) and structural preservation (property 4).

An Illustrative Example

We noted above (see for example Figure 1) that the comoc
filter performs efficiently and well on a variety of images.
Property 3 was the starting point of the current investi-
gation. If the input cumulative pdf is symmetric, then
it is appropriate to use the comoc filter. This is often
the case in image and signal processing, which explains
the good performance shown in Figure 1. In particular,
it is usually the case for a step edge that separates two
un-textured regions.

Suppose, however, that the noise distribution is asymmet-
ric, which might be the case for “edges” that separate tex-
tured regions. Consider, for example, the one-dimensional
signal shown in Figure 2. The underlying signal is con-
stant, with value 127. For z < 64, the noise is a zero-mean
(symmetric) Gaussian process G(0, 0); but for z > 64, the
noise is “rectified” |G(0,c)|. As can be seen from Figure
2b, the oc filter approximates the signal more closely than
the mean, median, co, or comoc, indeed it is close to the
true value 127. On the other hand, the co filter smooths
the signal, but still essentially follows, the noise. The co-
moc performs more poorly than the oc in this case. The
observations reported earlier, and shown in [1] are illus-
trated in Figure 2¢ by the performance of the comoc filter
on the symmetric noise.

How could one detect, and possibly localise, the Gaussian
step in Figure 27 Clearly, we seek to measure significant
change in the output of the various symmetric and asym-
metric filters after their application to an image. A key
aspect of our approach is that we pay minimal attention to
numerical values of pixels, as would be required for para-
metric statistics (eg the variance and mean), and statisti-
cal tests derived from them (eg the ‘t’-test,or ‘F’-test). In-
stead, morphology emphasises relative values and rank or-
ders (eg min, maz). This is, of course, the underlying rea-
son why morphological filters are related to rank-ordered
filters, but are better at preserving image structure. Con-
sequently, we turn to non-parametric statistics [12].

We use the (Wilcoxon-)Mann-Whitney test, which we in-
voke as a NAG routine (there is no obvious advantage
in using the more powerful Kolmogorov-Smirnov test for
our purpose). Roughly, it is the nonparametric analogue
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of the Student ‘t’-test. The Mann-Whitney test is used
to test the null hypothesis H, of identical distributions.
To apply the test in a horizontal direction (for example)
at a pixel (z,y) in a filtered image, we compare the 7 x 3
window to the left of the pixel with that to the right of
the pixel. Let the window to the left be called A, and
that to the right be B. The values in both A and B are
jointly sorted in increasing rank. The Mann-Whitney U
statistic is defined as the number of times a value in B
precedes one in A in this sequence. Efficient techniques
exist to compute this sum [12]. According to the criti-
cal value of U corresponding to a preselected significance
level a of its probability distribution, we choose to reject
H, in favour of one, of two possible, one-sided alterna-
tive hypothesises; (1) Fa > Fp, or (2) Fg > F4. The
alternative 1, for example, implies that the values in A
are stochastically larger than those in B which is a fam-
ily of alternatives including as a special case py > pp.
Figure 3 shows the result of applying the Mann-Whitney
test (with o chosen to be 0.002) to an “absolute Gaussian
step” image of which Figure 2 shows a single row. The
oc filter picks out the step change (as is foreshadowed in
Figure 2d) much more successfully than the co filter. Note
that the comoc filter would perform similarly to co, and
hence so would the median.

Experiments

The remainder of this initial study addresses the following
problems:

e Can textures give rise to asymmetric noise distribu-

tions?
If so, do the biased oc and co filters give better noise

suppression than the comoc filter without sacrificing
localisation?

How do the biased filters perform relative to the me-
dian filter?

Can one determine, in practice, that the input cumu-
lative noise distribution is best considered asymmet-
ric, and adaptively filter the image structure by the
co, oc, or comoc?

Is it useful to treat texture boundaries as transitions

between two, possibly assymetric, noise distributions,
and process them accordingly?

Positive answers are presented to each of these questions.

Signal Structure Over Scale

For reasons of space, we confine attention to the texture
boundary shown in Figure 4. As noted in the previous sec-
tion, our goal is not to determine texture boundaries by
parameter identification of the flanking textures followed
by a significance test on parameter differences [13]. To
give a feel for the complexity of the signal analysis, how-
ever, we show in Figures 5 representative cross sections of
(what we know to be) the flanking textures.



We first illustrate the observed behaviour of morphologi-
cal filters, on a real texture.

Experimental filter characteristics were determined as fol-
lows. Each image was smoothed with a one-dimensional
filter applied in the horizontal direction (vertical for the
rotated image example). Filter sizes of equivalent filters
are for the mean and median 2n+1 and the morphological
filters n. The average output after smoothing, computed
over a 32x32 neighbourhood was used to quantify the level
of bias of each filter. As can be seen from the Figure 6a,
changes in bias of morphological filters over scale charac-
terise the underlying signal structure in a quite different
manner from the mean, median or comoc filters. As one
would expect, similar trends in behaviour are found using
rank-order filters [14].

Reduction in variance was measured by the mean absolute
deviation (MAD) between the original and filtered ver-
sions. In these experiments, the MAD was computed over
the filter support 2n+1 and then averaged over the same
neighbourhood as used to estimate the average value. The
usual measure of dispersion for a distribution is the root
mean square sum of deviations, which is least if the devi-
ations are measured from the mean. The mean absolute
deviation is least when the deviations are taken from the
median. If the distribution is symmetric or moderately
skewed, and the deviations taken from the median, the
MAD gives a biased estimate of the standard deviation.
For the Normal case, correction factors to convert the sum
into an unbiased estimate can be looked up in Statistical
Tables. In interpreting the MAD graphs in Figure 65, it
should be remembered that the co and oc filters are bi-
ased signal estimators which influences the value of the
MAD. Clearly, the MAD for the symmetric filters (mean,
median comoc) will also be influenced by the bias intro-
duced by asymmetric distributions. Observe that in all
the examples the MAD of the comoc filter is always less
than at least one of the co and oc filters, as predicted by
our analysis.

Detecting Texture Differences

Figure 7 shows a collage of four textures. The nonpara-
metric approach proposed in this paper works directly
from the intensity surface, In contrast, most schemes
proposed in the computer vision literature for texture seg-
mentation, operate upon edge features [10,15]. To illus-
trate the difficulty of applying such a technique to stochas-
tic textures, Figure 8 shows the edges found by the Canny

detector. Separating the wool from the wood would be
difficult.

Next, the image shown in Figure 7 is processed in turn
using the biased filters oc and co of size n = 3. The
Wilcoxon-Mann-Whitney test is applied as described in
the previous section (with a significance level a = 0.001).
The minimum of the probability levels from both filters
1s used. Pixels where F)y > Fg are shown in black, and
where F'g > F4 are shown in white. This corresponds to
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the contrast sign of “edges”, but here the measurements
are of the statistical significance of the difference rather
than of magnitude (size). The result is shown in Figure
9. Figure 9c indicates the spatial organisation of sites at
which there is significant sample difference.

Adaptive Smoothing

Figure 10a shows the “smoothest” filtered image resulting
from applying the biased filters. More precisely, let the
sample sets A and B consist of point differences between
the median and the oc and co responses respectively. We
apply the Mann-Whitney test to assert the “best” under-
lying point estimate of the underlying signal, that is, the
co response if F4 > Fp or the oc response if Fg > Fjy.
Otherwise we accept the hypothesis that the original sig-
nal was symmetric and use the median response. Figure
10b is the absolute value of the difference between the orig-
inal image (Figure 7) and the smoothed version shown in
Figure 10a. It shows that the textural variation has been
effectively separated out from the underlying smooth grey
value surface, from which the texture boundary can be
found.

Concluding Remarks

The paper began with an analysis of asymmetric noise
and the detection of steps using the nonparametric Mann-
Whitney test. The previous section applied the tech-
nique to texture segmentation. We suggest that a texture
boundary can be constrained to lie between the positions
predicted by what are known a priori to be biased filters.
The uncertainty in the position of a texture, its poor lo-
calisation relative to a step that separates un-textured
edges, is consistent with intuition, and corresponds to a
pair of one-sided statistical analyses of the signal.

In this paper, we have concentrated on processing tech-
niques rather than the specific application to texture
segmentation. Considerably more work needs to be
done to analyse texture boundaries and to compare the
performance of our technique to those previously pub-
lished [16,17]. There are many limitations to this prelimi-
nary report on our approach and technique. For example:

e We have concentrated on one-dimensional analyses,
seeking significant change in the horizontal direction.
We need to extend the technique to two dimensions,
seeking the most significant directional change.

We treat each row of the image independently. In-
stead, we need to add the constraint of edge continu-
ity.

As usual, there is an uncomfortable number of thresh-
olds, significance levels, and scales. Though the
treatment is quite robust to changes, choices need to
be rationalised, and possibly determined automati-
cally.

We suggest that the MAD is a useful criterion for
choosing between the co and oc filtered images. This
requires further investigation.



Figure 1: (a) A range image taken by a triangulation laser
range finder developed jointly with NEL [Brady et. al.
1988]. Black points correspond to no data, either because
of specular reflections or because of laser shadowing ef-
fects. (b) The result of smoothing the image in a. with a
comoc filter. (image size 220 x 220)
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Figure 2: (a) A one-dimensional signal with symmetric
and asymmetric noise. The underlying signal is constant
with zero-mean additive Gaussian noise for ¢ < 64 and,
Jor z > 64, everywhere posilive noise whose amplitude is
the modulus of a Gaussian process. (b) The co filter pri-
marily responds to the noise whereas the oc approzimates
the signal more closely. Compare, for example the circled
regions. (c) The observations reported earlier, and shown
in [Noble 1989] are illustrated by (c) the performance of
the comoc filter on the symmetric noise. (d) The filter
output characteristics in the assymetric noise (left of this
caption), show that the oc follows the underlying constant
signal more closely.
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Figure 3: (a) The result of applying the Mann-Whitney
test after filtering an absolute Gaussian step with a oc
filter. White points are deemed significant difference be-
tween the populations A and B (see text). (b) The same
process applied to the co filter. (image size 54 x 54,
filter size isn = 3)

Figure 4: A texture boundary between wood and wool
(image size 154 x 196 ).
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TFigure 5: Representative profiles through the tezture al
locations A and B shown in Figure 4.
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Figure 6: (a) The average output and, (b) the MAD, for
the filters discussed in this paper applied to the wood tez-
ture of Figure 4 .

Figure 7: A texture collage consisting of (clockwise from
top left) patches of wool, wood, bread, and fur (image size
176 x 176 ).

Figure 8: Canny edges for the texture shown in Figure 7
(0=1.5, hysteresis threshold ratio 3 : 1 ). Distinguishing

wool from wood is quite difficult using an edge-based 1mage
representation.
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