The Adaptive Self Parameterising Texture Region
Boundary Tracker

D M Booth *and J E W Mayhew |

The Research Initiative in Pattern Recognition,
RSRE, St. Andrews Road,
Malvern, Worcs. WR14 3PS

A texture segmentation algorithm is described. Its
approach is to locate the texture boundary within
a processing window, and then follow the disconti-
nuity through the image.

The system operates in two modes : bootstrap and
feed forward mode. In bootstrap mode a portion
of the image is segmented, the texture boundary
is located, and all of the parameters necessary for
configuring the system are found. These include
the resolution of the segmentation, identification
of the most effective features for distinguishing be-
tween the two textures, and an estimate of the
texture’s conditional probability density functions
(pdfs) given the chosen feature set. In feed forward
mode the location of the texture boundary is used
to position the next processing window, and this is
segmented using parameters supplied by the boot-
strapper.

Bootstrapper

The bootstrapper provides answers to the follow-
ing questions :

e What texture measures should be used?

e Over how small an area can the texture measures

*Seconded by The
Establishment.

tAl Vision Research Unit, University of Sheffield,
Sheffield, Yorks.

Royal Signals and Radar

151

be computed with a reasonable level of statistical
confidence?

e How is the training set to be derived and mod-
eled?

e What type of clustering algorithm should be em-
ployed?

e What will be the source of the prototype texture
regions needed for solving the previous problems.

The following sections show (in order of program
execution) how each of the questions above have
been answered. Progress is illustrated using results
gained from processing the image shown in figure
1 (512x512 pixels, 256 grey levels).

Figure 1. Test image.

AVC 1989 doi:10.5244/C.3.26

Figure 1 consists of two independently histogram
equalised Brodatz textures [1] with a boundary
running from the top left hand corner to the bot-
tom right. The top left hand quadrant has been
selected as input to the bootstrapper.

Preliminary Segmentation

An example of both textures needs to be made
available to the system. The approach adopted
here is to use a split and merge algorithm [2] to
provide a preliminary segmentation, from which
two differently textured regions are identified by
means of a statistical test on feature values com-
puted over their sub-blocks.

Split is a recursive procedure which, beginning
with the whole subimage, divides nonhomogeneous
image blocks into four quadrants. An image block
is considered to be nonhomogeneous when the dif-
ference in feature values between any two of its
quadrants exceeds a user-specified split threshold.
Recursion depth is limited by a restriction placed
on the minimum size of an image block. The seg-
mentation is represented by a quadratic picture
tree, where the root node corresponds to the cur-
rent subimage. Each non terminal node has 4
children, each of which corresponds to a different
quadrant of the parent image block.

Split produces a set of image blocks of varying
size. These are input to a routine which assigns
a common label to adjacent regions separated by
a distance in feature space of less than a grouping

threshold.

The split and merge routine employs one texture
measure. If more were to be used, the most vari-
able of them would tend to dominate, and ef-
fort would be wasted computing features that con-
tribute very little to the discrimination process. It
is not possible to standardise the feature values
without prior knowledge of their distributions for
each texture.

The preliminary segmentation is shown in figure
2. The grey level of an image block is linearly re-
lated to the value of the texture statistic computed
over the same area.

Figure 2. Preliminary segmentation.

A representative of both texture classes is selected
from the set of regions produced by the split and
merge algorithm. These are identified by first con-
sidering the two largest regions. Both are divided
into sub-blocks, and texture measures (§2.3) are
evaluated for each sub-block. These two samples
under go Hotelling’s T2 test [8] for evidence that
they originate from the same population, in which
case the smaller of the regions is discarded and the
next largest region is considered.

Window Size

To achieve a high resolution segmentation texture
features must be computed over as small a pro-
cessing window as possible. However, small win-
dows produce features with reduced statistical con-
fidence. In particular, the variance of the texture
measures will increase dramatically when the pro-
cessing window is smaller than the texture primi-
tive, and as a result classification will become unre-
liable. Window size is particularly important when
the segmentation algorithm does not employ over-
lapping windows, in which case the window size
defines the resolution of the segmentation. Hence
it would be desirable to find the size of the texture
primitives and set the minimum size of a process-
ing window accordingly. Conners et al. [4] de-
scribe a technique for computing texture primitive
sizes using inertia statistics derived from cooccur-
rence matrices. A cooccurrence matrix contains
estimated probabilities that two pixels f(z1,y1)
and f(22,y2), which are separated by a distance,
6, and an orientation, #, have grey levels 7 and j
respectively. Various statistical texture measures
can be calculated from such a matrix [4,7], in par-

152

ticular, the inertia measure is given by

Ng-1Ng-1
16,0)= Y, Y (i—34)s(i, 16,0
i=0 j=0

where s(i, j|6,0) is the (7, j) th element of the ma-
trix (6,0) and Ng is the number of grey levels.
Inertia can be seen as measuring the dissimilarity
between many pairs of pixels separated by (6, 6).
E.g for a 1 dimensional data stream that exactly
repeats itself every A pixels, the inertia measure
will have a minimum value of zero when § = A.
Likewise, the size of the smallest texture primitive
is given by twice the displacement corresponding to
the first inertia peak, for fixed #. This procedure
should be repeated for several orientations, e.g. 6
= 0, 45, 90 and 135 degrees. If the feature set
is invariant under spatial rotation then the largest
primitive size must be used, otherwise one could
choose to evaluate features in only those directions
where the primitive size is smallest, thus gaining
as much resolution as possible.

Feature Selection

The feature employed by the split and merge algo-
rithm is hard wired, and chosen on the basis of its
performance with respect to various image prod-
ucts. Any reliable measure would suffice, Chen and
Pavlidis [3] used correlation. The feature sets used
by the clustering procedure are chosen dynamically
from some predetermined group of statistical tex-
ture measures. We have implemented seven second
order cooccurrence statistics : inertia, energy, local
homogeneity, entropy, correlation, cluster shade,
and cluster prominence. The single most reliable
of the cooccurrence statistics was found, in our ex-
periments with natural textures, to be inertia, and
consequently it was incorporated into the split and
merge routine. Of the 7 cooccurrence statistics, the
number that can actually be employed by a clas-
sifier at any one time is limited by the so called
”curse of dimensionality”. As a rule of thumb there
should be at least five training samples per feature
for each texture class being considered [6]. Given a
feature set of cardinality, D, it is necessary to de-
termine a subset containing d features which can
best discriminate between the two texture classes.
The only way of guaranteeing an optimal solution
when dealing with a restrictive number of training
samples is by examining every subset of cardinality

d, however, this is unlikely to be computationally
feasible. A less intensive strategy that can give re-
liable results is " plus [take away r” [5], here config-
ured | = 2, r = 1. In common with all bottom-up
search strategies, processing begins with a full set
of available features and an empty current feature
set. The ”plus 2” routine identifies the 2 available
features that when combined with the current fea-
ture set have greatest discriminatory power, and
then moves them to the current feature set. The
”take away 1” routine identifies the single feature
that when removed from the current feature set
has the least effect on its discriminatory power,
and moves it back to the set of available measure-
ments. A feature set of cardinality d is constructed
by performing d — 1 iterations of the plus 2 take
away 1 routine, and then adding the final feature
using "sequential forward selection” (i.e. plus 1).
The discriminatory power of a feature set is mea-
sured by the Bhattacharayya distance between the
two normally distributed texture classes w; and w,,

B, = S - [Bt -

L 13(: + 20)l
Ty [121 |~'2122|1f2]

where %7 is the mean feature vector for class i,),
is the covariance matrix for class 7, and |)", | is the

determinant of) ,.
Training set

The image blocks in the preliminary segmentation
are classified using training samples extracted from
the prototype texture regions. Since classification
performance usually increases as a function of the
area over which the texture measures are com-
puted, the quadtree is pruned in such a way that
any node whose children are all of the same texture
class takes on the identity of the child nodes, which
are subsequently deleted. At each resolution, fea-
ture values are computed over windows contained
within the two prototype texture regions, and a
pair of conditional pdfs (p(x|w;)) are fitted.

153

Clustering

The quadratic picture tree is parsed. At each ter-
minal node which is not a member of a training
set, the corresponding image block is classified as
belonging to either one or other of the two tex-
ture classes. Each image block is characterised by
the feature vector, x, which enables the a priori
probabilities P(w;) to be converted to a posteriori
probabilities, P(w;|x), by using the Bayes decision
theory
Py) = P)P()
p(x)

where

2
p(x) =) p(xlw;) P(wy).
i=1

Classification is made such that

class wy is chosen if P(wy|x) >=1- A,
or class wy is chosen if P(wy|x) >=1- A,
otherwise wy is chosen.

where A, is a reject threshold, and rejected sam-
ples are assigned to class wq.

An image block is normally classified using the pdfs
which correspond to the resolution of that image
block. However, if the discriminatory power of the
feature set is greater at a higher resolution, then
the block is split into 4, and each quadrant is clas-
sified independently.

Figure 3. After clustering.
Overview

The bootstrapper is described schematically in

figure 4. The squares and rectangles represent
processes and parameters, respectively. To sum-
marise, on the first pass of the split, merge and
prune routine the minimum block size takes on a
”safe” value which is larger than any of the tex-
ture primitives. The primitive sizes are evaluated
for each of the resulting large image blocks. The
split, merge and prune process is then executed a
second time using a minimum block size commen-
surate with the largest primitive size. The training
set module identifies the two prototype texture re-
gions, from which it calculates the number of train-
ing samples available at each resolution, and hence
the number of features that can be employed by
the classifier. The best features for distinguish-
ing between the two textures are then determined
for each resolution, and the conditional pdfs fitted.
The image blocks are classified using a small value
of A, thus providing a good safeguard against clas-
sification errors. The resulting segmentation pro-
vides the training set for the next iteration of the
algorithm. Since the new training set should be
larger than the previous one, the conditional pdfs
should have better estimates, and it may be pos-
sible to include more features in the classification
process, and consequently, a superior segmentation
might be achieved. For computational reasons the
Bayes classifier is only invoked twice, with just the
first of these incorporating a possibly active reject
threshold.

Feed Forward

This section describes the procedure for locating
and modeling the texture boundary. The algo-
rithm has four parts :

eBlob Removal. Regions in the segmented im-
age that are totally surrounded by the other tex-
ture class are detected using template matching
and then deleted.

eBoundary Extraction. The texture boundary
is located by scanning the deblobbed image from
either the left and right, or top and bottom, de-
pending on the predicted orientation of the bound-
ary. The scan lines stop when they encounter a
class transition. If the two opposing scan lines stop
at the same place then their point of intersection
is assumed to lie on the boundary.

154

safe res. thresholds] Ar
thresholds resolution —“Iresolutionl |n.fea.tures features
sub-image
L split/ split/ -
merge/ + primitive merge/ —— training best ~ cluster
prune prune set fea.t.lll'es
Figure 4. Bootstrap mode. Prune

Results

The final segmentation of figure 1 is shown in fig-
ure 7. The result is quite favourable, particularly
as humans seem to find these two textures diffi-
cult to separate. The difference in quality between
the preliminary segmentation and the final result
demonstrates the benefit of working in a multi-
dimensional feature space, at least where cooccur-
rence statistics are concerned. Substantial com-
Figure 5. After blob removal and bound- putational savings are possible using the tracking
ary modeling. approach as oppose to segmenting the whole im-
age.

eBoundary Modeling. A set of boundary points
1s modeled by a 1st or 2nd order polynomial (see
figure 5).

eWindow Positioning. The centre point of the
next processing window is chosen as the intersec-
tion of the boundary line with the current process-
ing window.

The parameters obtained from the bootstrapper
are fed forward for the segmentation of subse-
quent processing windows. Since no parameter es-
timation is required these windows can be smaller
(128 pixels square) and the segmentation process
is much simplified (figure 6).

resolution
thresholds [features |

sub-image
L Figure 7. Final segmentation.
split/
merge/ ~ cluster — Current issues being addressed include :
prune

Figure 6. Feed forward mode.

155 -

e The automatic selection of an effective split and
merge feature.

e Automatic derivation of split and merge thresh-
olds.

e The addition of a performance monitoring pro-
cess to run in parallel with the tracking soft-
ware. As viewing conditions and textural proper-
ties change the monitoring process will either up-
date the relevant parameters or instruct the track-
ing module to perform another bootstrap.

e Increasing the segmentation resolution by over-
lapping those texture measure windows lying close
to the boundary (see figures 8 and 9) and also by
fitting a surface to the a posteriori probabilities
and interpolating for the boundary position.

%

Lt

Figure 8. Input image.
Acknowledgement

The authors should like to thank Mr John Sabey
of the Royal Signals and Radar Establishment with
whom they had several informative and enjoyable
discussions.

References

1. Brodatz, P. Texture : photographic album
for artists and designers, New York, Dover

(1966).

Figure 9. Output image.

2. Chen, P.C. and Pavlidis, T. "Segmentation
by texture using cooccurrence matrix and a split-
and-merge algorithm,” CGIP, 10, (1979) pp.172-
182.

3. Chen, P.C. and Pavlidis, T. "Segmentation
by texture using correlation,” IEEE Trans. vol.
PAMI-5, No.1, (1983) pp.64-69.

4. Conners, R.W. et al. ”Segmentation of a
High-Resolution Urban Scene Using Texture Op-
erators,” CVGIP 25, (1984) pp.283-310.

5. Devijver, P.A. and Kittler, J. Pattern
Recognition A statistical approach, Pren-
tice/Hall International (1982).

6. Foley. D.H. "Considerations of sample and
feature size,” IEEE Trans, vol. IT-18, (1972)
pp618-626.

7. Haralick, R.M. et al. ”"Textural features for
image classification,” IEEE Trans, vol. SMC-3,
no.6, (1973) pp.610-621.

8. Press, W, et al. Numerical Recipes, the art

of scientific computing,” Cambridge University
Press (1986).

156

