
A Novel Approach to Boundary Finding

Richard T.Shann & John P. Oakley

Department of Medical Illustration
Department of Electrical Engineering

University of Manchester
M R I

Oxford Road

M13 9WL

A new class of algorithms is described for the
analysis of boundaries in a discrete image. The
methods are based on well known methods of Gaussian
filtering coupled with the use of numerical methods.
Instead of the conventional discrete filter and
exhaustive evaluation by convolution the filter output
is computed only at points of interest. In addition
derivative information is gathered at these points
which permits rapid convergence onto features of
interest. Speed of computation and sub-pixel precision
are features of these methods. The directional
derivative of Gaussian andLaplacian of Gaussian are
discussed and possible applications indicated.

This paper describes work in progress at Manchester
University on a novel approach to the problem of
finding boundaries in images using Gaussian filtering.
The work originated from a study of the optimal method
of reconstructing a filtered image from a knowledge of
the filter operator and the sensor point spread
function. The first working prototypes based on this
approach are less than a year old and there seem to be
quite a few avenues to explore. There are three areas
currently receiving attention:

1) Linear measurement based on directional derivative
of Gaussian operators. This work has reached the stage
of being incorporated in a practical working system.
2) Boundary analysis using a variable angle
directional derivative of Gaussian. Demonstration
prototypes of this work are being tested.
3) Boundary analysis using the Laplacian of Gaussian
filter.
The paper will present the background to the new

method and some of the work done so far.

BACKGROUND

Current methods for locating objects in images
typically use an edge extraction stage followed by a
model fitting or pattern matching stage. One class of
edge extraction algorithm employs Gaussian filtering,
both to reduce noise and to define a spatial scale
(controlled by the standard deviation of the Gaussian

filter function) over which edges will be considered
significant. So, for example, Marr and Hildreth [1]
used the zero crossing contour of the Laplacian of
Gaussian image as an estimate for the boundary.

Haralick [2] used the second order directional
derivative, in the direction of maximum gradient, and
found the zero crossings in the transformed image.
Canny [3] described a scheme for edge analysis which
involved evaluating the directional derivative of
Gaussian in the direction of maximum gradient and
marking local maxima as candidate edge points. Global
thresholding (with hysteresis) then yields the edge
points. Synthesizing the results obtained from
differently sized Gaussians helps overcome the trade-
off between positional accuracy and sensitivity.
Alternatively, Bergholm [4] suggests tracking edges
while changing the scale of the Gaussian.

THE NEW METHOD

In the schemes outlined above the filter is sampled to
make a mask which is convolved with the image samples
to give a discrete transformed image which is then
searched. Feature will, in general, lie in between the
pixel positions. The conventional approach to feature
detection relies on some sort of interpolation of the
transformed image. For example zero crossings are
usually detected using linear interpolation. The sort
of image being analysed in this approach is illustrated
by fig. 1, where a Laplacian of Gaussian convolution
has been performed on a coarsely sampled artificial
image of a triangle. Clearly determining the zero
crossing contour from such an image is no small task.

Instead of doing this we can reconstruct the
transformed image between sample points directly in
terms of the image samples. In this case the filtered
image is a smooth function over the real plane, and we
can apply numerical optimisation techniques to search
it directly for features of interest. Fig. 2 shows the
sort of image being searched in this case. This is the
same triangle image used for fig. 1 but transformed
using the optimal reconstruction filter discussed
below. This image is presented only to give a feel for

133
AVC 1989 doi:10.5244/C.3.23



Fig. 1

Discrete Lapiacian of Gaussian Image

Fig. 2

Reconstructed Lapiacian of
Gaussian Image

Fig. 3

Derivative of Gaussian Kernel

Fig. 4

Lapiacian of Gaussian Kernel

134



what is happening, as we shall see below we avoid
actually computing it as a whole.

In conventional techniques a subsequent stage of
processing is normally needed after computing the
convolution to identify edges and what the edges belong
to. For example if a sought for object has a boundary
which can be described by a few parameters one could
optimise the parameters to fit the edge data found.
This might then yield positional or dimensional
information - often of sub-pixel accuracy. However it
will frequently be the case that weak edges which one
threw away in the first stage one would, with
hindsight, wish one had retained, so one is tempted
into increasingly model dependant algorithms, to-ing
and fro-ing between the discrete transformed image data
and the floating point world in which real objects
reside.

In our new method we stay with the filtered image
working all the time with the floating point coordinate
system in which we hope to locate objects. The use of
numerical analysis techniques to explore the surface of
the filtered image means we never have to perform a
convolution since we only calculate the surface at a
few points, converging on the feature of interest. It
is the avoiding of the convolution step which gives the
present algorithm its potential for speed.The method is
particularly suited to metrology problems, since the
question of sub-pixel accuracy can be quite naturally
dealt with.

Mathematical formulation

Given an image f(x,y) and a convolution kernel function
K(x,y) we can define a filtered image Kf(x,y) by the
convolution

Kf(x,y) = J ffx'-x.y'-y) K(x'.y') dx'dy'

Since we only have samples fij of the image at the
pixel positions (ij), the usual approach is to sample
the operator and calculate the discrete image

Kff

!'
...(2)

This is time consuming to calculate even using discrete
Fourier transforms, and once calculated, is not very
pleasant to work with. To give a concrete example,
consider for example the case

K(x,y) = (2/a2)(r2/2cr2 - 1) exp(-r2/2<r2)

where r2 = x2 + y2

- the well-known Laplacian of Gaussian filter. We
know that the zero crossing contours of the filtered
image correspond to edges in the image, but in general
we won't find a sequence of pixels i j such that Kfij
is zero. Instead we must infer the edge position from
adjacent pixels where Kf changes sign.

A more elegant approach is to consider the function

Kf(x,y) = 2 2 f,j K(x-l.y-j)

I I

-..(3)

This is a smooth function (assuming K is smooth) which
we can easily calculate for any particular (x,y). We
can see that it has the same value on the pixel
boundaries as (2). In addition, we can just as easily
calculate derivative information at any point of
interest, eg

2 2 f,

I j

Using this information we can use standard numerical
methods to explore the transformed image to perform
such tasks as refining an estimate of edge position,
tracking a boundary etc. The alert reader will have
noticed that (3) is not in general the same as (1), the
difference depending on how the fij relate to the
f(x,y), ie on the sensor point spread function - for
more details see the appendix. Another point is that
because the Gaussian operators have infinite support we
have to truncate the sum when calculating (3). This
causes small discontinuities in the function and
derivative values which can upset the more
sophisticated numerical analysis algorithms.

THE DIRECTIONAL DERIVATIVE
OF GAUSSIAN.

The directional derivative of Gaussian (see fig. 3)
gives a filtered image with peaks at the locations of
edges normal to the derivative direction. A numerical
optimisation routine such as the NAG routine E04LBF
will search such a function and find the local maximum.
In order to make the search converge rapidly the NAG
routine uses the first and second derivatives of the
transformed image. In a typical application the
direction (or approximate direction) and the
approximate position of the edge are specified in
advance by the user and the transformed image and its
derivatives are computed at that one point for that one
direction. On the basis of these values, the algorithm
then chooses another point as a (hopefully better)
estimate for the boundary location, and the process is
iterated until a boundary has been found. This means
that the transformed image is only evaluated at a
convergent sequence of points, rather than at all
points on the image raster, and this results in a huge
saving in computer time, especially for large

135



operators. The angle of the directional derivative can
also be treated as a parameter in the optimisation, in
which case the derivatives with respect to angle are
also computed. This algoritm was implemented by calling
the NAG Fortran routines directly from Microsoft Pascal.

An examination of the second order partial derivatives
at the final point in conjunction with the size of the
peak found yields useful information about the nature
of the peak. The first order derivatives will always
be close to zero at a peak but some of the second order
derivatives will be large if a sharp edge has been
found, and the peak will be large if a long edge has
been located.

The choice of the scale of the Gaussian used affects
the positional accuracy, sensitivity and reliability.
The distance to the nearest competing edge, the error
in the seed position, the signal to noise ratio, and,
finally the pixel size all place limitations on the
sharpness of the filter that can be used. The factors
involved here are similar to the ones discussed in
relation to Canny's scheme, because the underlying
filter is the same, but work remains to be done on
relating the choice of filter size to the estimated
error in the choice of seed point in a systematic way.

In common with all schemes using Gaussian filtering
there is the usual distortion of edge position (caused
by the curvature of the edge concerned) to be taken
into account where necessary. At present there are two
fields of interest being actively pursued. In one the
application is an interactive measurement scheme. The
edges of the object to be measured are indicated by the
user, and the distance between the edges is reported by
the algorithm typically accurate to 0.1 pixel. This
has been successfully used for the measurement of the
aspect ratio of drops of molten metal in order to
determine the surface tension [5]. The other area of
interest lies in the generation of boundary cues, for
example to determine the location and orientation of
parts in an industrial inspection situation.

THE LAPLACIAN
OF GAUSSIAN

The Laplacian of Gaussian filter kernel is shown in
fig. 4. The zero crossings of the Laplacian of
Gaussian image can be tracked numerically directly in
the floating point coordinate system (x,y). The
approach taken starts with an initial estimate for a
point on the zero crossing contour to be traced. This
is refined by minimising the square of the Laplacian of
Gaussian image. From this seed point the contour is
tracked as follows. A maximum step S and a minimum
step s are chosen based on the sigma value of the
operator being used. A quadratic approximation Qf(x,y)
is formed from the derivative information at the seed
point, thus

Kf(x,y) ~ Qf(x.y) =

K
xx yy

where x,y are displacements from the seed point, and
the K's are the derivatives evaluated at the seed point
le

K x = etc

The equation Qf(x,y) = 0 is a conic section which is
our local model for the zero crossing contour. We now
choose a step size (starting for safety with our
minimum s). Then we can determine where the circle of
radius s intersects this conic section and thus
determine a new point at which to evaluate Kf. This in
turn will yield a new quadratic approximation and so
on. To simplify the computation in practice a step
along the straight line in the direction perpendicular
to the steepest descent is made and a straight line
intersection is calculated from there. To permit
termination we need to determine whether the original
seed point lies on the current conic section, if so
then we have terminated. (This test is only undertaken
when we have returned to within the distance S of our
seed point).
We also need to force termination when the boundary

becomes to weak or broad. To do this several measures
are available, the one used in this implementation
comes from monitoring the control of the step size
described next. Keeping to a conservative step size s
for the whole contour would require more calculation
and a more bulky representation than could be had by
varying the step size to suit the local curvature. In
this implementation we start with the small step size
s, increasing it (up to the maximum S) for each
successful step. A step is unsuccessful if the
intersection with Qf(x,y) = 0 yields only imaginary or
distant solutions, and in this case the step size is
reduced and another attempt is made. If the step size
drops below s then the edge has petered out and the
algorithm terminates.

The output of this algorithm is a set of conic
sections in the neighbourhood of a set of points.
There is no guarantee however that these curves
intersect at sensible points between, so that, if an
application required it, a further stage of processing
(eg weighted averaging) would follow. (This would be
equivalent to smoothing out the truncation which occurs
when calculating (3) above). As with the directional
derivative of Gaussian there are geometric
considerations which affect the position of such
contours.

Results

This algorithm has been implemented in C on a Tandon
AT hosting a dumb image store, and tried on several

136



different types of image. As expected the maximum step
S which yields reliable tracking depends on the a of
the GaussianJn addition there is a trade off between
speed of sketching out a contour and the accuracy of
the quadratic approximations for intermediate points.
At too large a maximum step size S the time taken to
trace out the contour can actually increase due to the
back-tracking needed if a step fails. Typical values
are shown in tables 1 and 2. The routines have been
written with simplicity rather than speed in mind so
that there is scope both on the hardware and software
side for considerable speed improvements. Applications
envisaged for this technique are measurements of area,
aspect ratio, projected widths etc on blobs.

CONCLUSION

The preliminary work on these algorithms has been done
on PC/AT computers, using a mixture of Pascal, C and
Fortran. The results are very promising.
Measurements can be taken and contours traced in a
matter of seconds even with this relatively simple
equipment. This is in marked contrast to the
conventional convolution approach where the convolution
step itself takes an half an hour on an AT, even using
a good FFT algorithm, after which the problem of
tracing a contour or determining the position of an
edge still remains to be solved.

Max step

size S

1

2

3

Number of

arcs

160

88

82

Timing
(sec)

90
54
61

Outline of image of a coin (perimeter 138 pixels)
Laplacian of Gaussian with <r = 1.6

Table 1

Max step
size S

1

2

3

4

5

6

7

Number of
arcs

153

91

55

45

36

45

57

Timing
(sec)

143

97

58

48

39

58

84

Outline of image of a coin (perimeter 138 pixels)
Lapiacian of Gaussian with <r = 2.5

Table 2

137



APPENDIX

The relation between fij and f(x,y) can be expressed by

f,, = J f(*,y) m(x-l.y-j) dxdy

where m is the sensor point spread function. (Ideally
m would be unity over the area covered by the pixel
(the unit square centred on the origin) and zero
elsewhere). In general this transformation is not
reversible, but given a point spread function m we
could seek a reconstruction filter R such that

Kf'(x,y) = R(x-I,y-J)

i J

is close to Kf(x,y) at all points for arbitrary images
f. For the ideal m given above it can be shown (6)
that this optimal R is given by the convolution of m
with the filter kernel K.

R(x,y) = J m(x',y')K{x-x',y-r) dx'dy'

Provided the pixel size is small compared with the
distance over which K varies R will be the similar K,
hence we can use (3) above.

ACKNOWLEDGEMENTS

Support for this work came from the Manchester
Central District Research Grants Commitee (R.T.S.)
and UK Science and Engineering Research Council
(J.P.O.) and from facilities provided by the
University of Manchester.

REFERENCES

[1] Marr & Hildreth, "Theory of Edge Detection", Proc
Roy SocVol 207,1980

[2] Haralick, "Digital Step Edges...",IEEE PAMI VOL
6,1984

[3] Canny, "A Computational Approach to Edge
Detection", IEEE PAMI VOL 8,1986

[4] Bergholm, "Edge Focussing", IEEE PAMI VOL 9,1987

[5] J. P. Oakley & R. T. Shann "An efficient method for
finding the position of object boundaries to sub-pixel
precision", IEEE PAMI (1989) (to appear)

[6] J.P. Oakley and MJ. Cunningham, "A function space
model for digital image sampling and its application in
image reconstruction", CVGIP (1989) (to appear)

138


